2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE) | 979-8-3503-1594-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISSRE59848.2023.00084

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

fKPISelect: Fault-Injection Based Automated KPI Selection for
Practical Multivariate Anomaly Detection

Xingjian Zhang!2, Yingin Zhao'2, Chang Liu!, Long Wang'3,
Xin YangQ, Yefei Hou?, Zhongwen Lan?, Xining Hu2,
Beibei Miao?, Ming Yang?, Xiangyi Jing?, Sijie Li?
'REASONS Lab, Institute for Network Sciences and Cyberspace, Tsinghua University

2China Telecom Cloud Technology Co., Ltd.

3Zhongguancun Laboratory

{zhang-xj22, zyq21, chang-liu22} @mails.tsinghua.edu.cn, longwang @tsinghua.edu.cn,
{yangxin6, houyfl, lanzw12, huxining, miaobb, yangm37, jingxyl, lisj22} @chinatelecom.cn

Abstract—IT services are now popularly hosted in cloud systems.
In order to enhance the availability of cloud services, an emerging
approach for detecting failures of cloud components is to monitor
Key Performance Indicators (KPIs) of the components and apply
Neural Network based Al technologies to detect KPI anomalies.
Multivariate Time Series Anomaly Detection (TSAD) models have
been designed for this purpose. However, when applying such
models directly to real-world cloud systems the anomaly detection
performance is not as good. This is because the number of KPIs in
real cloud systems is typically much more than the number of KPIs
in the datasets used for model evaluation, and the larger number
of KPIs bring about a performance loss of the models’ anomaly
detection. Therefore, selecting KPIs properly is essential for applying
multivariant KPI data for any practical anomaly detection. This
paper studies this performance loss issue when TSAD models are
applied onto real-world cloud systems, and proposes fKPISelect, a
mechanism of automated KPI selection based on fault injection.
We implemented fKPISelect, deployed it to a real cloud system,
and created a real-world KPI dataset. We conducted extensive
experiments, and the experimental results show the effectiveness
and practicality of fKPISelect: it improves the F1 score of anomaly
detection from 0.68 to 0.91 for real-world KPI data.

Index Terms—anomaly detection, cloud reliability, unsupervised
learning, KPI, multivariant analysis

I. INTRODUCTION

Nowadays many IT services are hosted in cloud platforms.
Cloud services must be highly available as accidental failures of
cloud services may cause revenue losses up to millions of dollars
or higher to the service providers, cloud providers and/or service
users [1].

There are a large number of various kinds of components
involved in cloud services, including software programs, virtual
machines (VMs), physical servers, network devices, etc. A com-
mon approach for detecting failures of the components is to
monitor Key Performance Indicators (KPIs) of the components,
such as CPU utilization, memory utilization, disk usage of the
VMs or physical servers, network latency, response time and
service throughput, etc.

Traditionally simple threshold-based approaches are applied to
detect component failures, i.e. pre-defined threshold-based rules
are created to monitor these KPI values and when certain KPI
values exceed the threshold values a failure is detected[2, 3].
The approaches require users to have sophisticated expertise on

This work has been supported by the NSFC Project of China under Grant
62132009. Long Wang is the corresponding author.

the KPI values and carefully select the large number of different
threshold values for so many components’ various KPIs.

Recent years see the rapid adoption of Neural Network based
artificial intelligence (Al), and employing deep learning models,
such as multivariate Time Series Anomaly Detection (TSAD)
models, for KPI-based anomaly detection is extensively studied
[4-13]. Each vector of the time series data at a time point consists
of multiple items with each item being the value of a KPI at that
time. The number of KPIs is just the number of the vector’s
items or the vector dimension. Softwares like Prometheus|[14]
and Grafana[15] are now popularly deployed in cloud systems
for collecting, monitoring and visualizing a huge amount of
time series KPI data, and neural network AI models such as
Variational AutoEncoder (VAE)[16], AutoEncoder (AE)[6] are
trained to detect KPI anomalies. Specifically, the Al models
process multivariant time series data [17, 18] and perform the
tasks of reconstructing the data after the models are trained
with the data collected during normal behavior; when the actual
values largely deviate from reconstructed values (in terms of
reconstruction loss values) an anomaly is detected.

However, although these models are demonstrated to be ef-
fective in experimental results reported in papers, applying them
directly to real-world cloud services/systems does not result in as
good anomaly detection performance as reported. Our experience
of practically applying such models to our cloud system shows
that, though their anomaly detection performances, in terms of F1
score (a metric combining both precision and recall of a detection
capability), are reported to be around 0.80 or higher (0.92~0.98 in
the AnomalyTransformer model [9] and 0.79 in the USAD model
[6]), the F1 score of applying them in our real cloud system is
much smaller (0.68 and 0.28 for the AnomalyTransformer and
USAD models, respectively, as shown in the “Node_data Full”
row of Table III in Section VI).

We looked into the performance loss of anomaly detection. The
number of KPIs in real cloud systems is typically much more than
the number of KPIs in the datasets used for model evaluation.
Popular datasets that most existing work is evaluated against are
well-preprocessed, and the preprocessing includes KPI selection;
as a result, the number of KPIs of the datasets is largely reduced.
For example, the Server Machine Dataset (SMD) [5] has 38 KPIs,
and the Course-To-Fine dataset (CTF) [10] has 49 KPIs. But real
cloud systems may have far more KPIs. For example, Prometheus,
a popularly deployed monitoring tool in cloud systems, provides

2332-6549/23/$31.00 ©2023 IEEE 183
DOI 10.1109/ISSRE59848.2023.00084
Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

various KPIs in the categories of CPU, Memory, disk, network,
etc., and the number of KPIs Prometheus provides in our cloud
system reaches 493. The large number of KPIs bring about much
noise which undermines the models’ performance (see in-depth
discussion in Section III).

As a result, the practical experience of applying multivariate
time series anomaly detection models onto real-world systems,
e.g. [10, 11], employs a manual selection of KPIs as part of
data preprocessing. However, the manual KPI selection demands
operators to have rich experience and expertise in service/system
behavior. Open datasets of multivariant KPI time series data
do not help operators much in the manual KPI selection task.
It is because currently such open datasets do not provide KPI
name or detail information, i.e. what system property (like CPU
utilization, memory utilization, or something else) each item of
a vector in the dataset specifies. Moreover, a KPI item in an
open dataset may not be exactly the same as one collected from
the practical cloud system. So the operators are unable to know
which ones of the large number of KPIs in the practical system
correspond to the small set of KPIs in the datasets.

Therefore, KPI selection is an essential task in applying multi-
variant KPI time series data for any practical anomaly detection.
This paper studies the problem of KPI selection for practical
KPI-based multivariate anomaly detection in cloud systems. As
far as we know, there are few, if not none, prior work that
investigated this essential problem in Multivariate Time Series
Anomaly Detection (TSAD). This paper focuses on studying the
limitations of current KPI-based anomaly detection approaches.
Now almost all KPI-based anomaly detection uses unsupervised
models. So supervised models for KPI-based anomaly detection
is not discussed here.

In this paper, we propose fKPISelect, a fault-injection-based
automated KPI selection mechanism, after studying how the noise
brought by a large number of KPIs worsens the anomaly detection
performance of TSAD models. We inject errors such as network
packet loss and high CPU consumption, but we use the fault
injection terminology in this paper as it has been widely adopted
for traditional reasons. Specifically, the fKPISelect methodology
performs the following steps:

1) The KPI data of the cloud system are collected.

ii) A set of predefined types of errors are injected into a small
set of components in a test environment of the cloud system,
and the KPI data associated with the set of components are
collected. Note that these data include those collected when an
injected error is present and others collected when no error is
present, i.e., before the fault injection or after the injected error
is corrected. These KPI data are labeled as error-present or normal
correspondingly.

iii) For each KPI item we use the time series data of only
this KPI item collected in step i (i.e. the KPI vector dimension
is 1) to train TSAD models and use the data of only this KPI
item collected in step ii as the testing dataset to evaluate how
much this KPI item is sensitive to the predefined error types.
Though the TSAD models are typically unsupervised models, we
exploit the labels in the testing dataset to evaluate the models’
anomaly detection performance (precision, recall, or F1 score),
and compute the KPI item’s sensitivity value according to this
performance. Details of the sensitivity computation are available

184

in Section I'V-A.
iv) After all KPI items’ sensitivity values are computed those
KPI items with values higher than a threshold are selected.

Then the production time series data of only the selected KPI
items (production data are not involved in steps i or ii) are fed
to the TSAD models for online anomaly detection.

A straightforward idea of reducing the number of KPIs is
to leverage common dimensionality reduction technologies such
as clustering algorithms. But our experience shows that the
clustering of KPI data collected during normal behavior does not
help much: the F1 score is 0.71 as shown in the “cluster” row of
Table V in Section VI (when AnomalyTransformer is used). Note
that the F1 score is 0.68 when all KPI data are used. When fault
injection is conducted and error-present KPI data are employed
for KPI selection, the anomaly detection’s F1 score increases to
0.91 in the “fKPISelect” row of Table V.

This clearly demonstrates that error-present KPI data obtained
via fault injection are critical for the KPI selection. It is because
similarities of two KPIs during normal behavior do not mean
the two KPIs still behave similarly when there is an error. We
believe general knowledge of abnormal behavior of the system
(like the error-present KPI data) largely boosts the performance
of anomaly detection, as pointed out by [19]. So for practical
anomaly detection in real-world cloud systems, we leverage fault
injection to gain the knowledge, which is implied by the sensitiv-
ities of the selected KPIs. In summary, this paper’s contributions
are listed as follows:

« To the best of our knowledge, we are the first to investigate
the issue of KPI selection in multivariate TSAD and point out
the necessity of it for practical multivariate TSAD. We propose
fKPISelect, a mechanism of automated KPI selection based on
knowledge learned by means of fault injection.

o We investigated the performance loss issue of multivariate
TSAD models when they are applied to real-world cloud systems,
in particular when there are a large number of KPIs. Besides
the experimental results that demonstrate the effectiveness of our
fKPISelect (Table III), we conducted a theoretical analysis of the
performance loss issue in Section III.

« We implemented fKPISelect, deployed it to a real
cloud system, and created a real-world KPI dataset. The
dataset containing the metadata of the KPIs for future KPI-
engineering research and the fault injection tool are available at
https://github.com/THUzxj/fKPISelect.

« We conducted a series of experiments on both open datasets
and the real-world dataset. The experimental results show the
F1 score of the anomaly detection with full KPI data is 0.68,
the score with manual KPI selection is 0.75, and the score
with fKPISelect is 0.91 (Table III) for the real-world KPI data
(Node_data). The results clearly demonstrate the fKPISelect’s
effectiveness in improving the anomaly detection performance
and making TSAD models practical for real systems.

II. GAP BETWEEN EXISTING DATASETS AND DATA IN
PRACTICE

We find a gap between existing open datasets and the KPI data
in practical systems, which makes it difficult to select the most
valuable KPIs for anomaly detection based on existing practice.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

The gap includes three aspects: the number of KPIs, the type of
KPIs, and the relationships between KPIs and errors.

The datasets that most existing works are evaluated on are
well-preprocessed, including the KPI selection, standardization,
etc.. SMD (Server Machine Dataset) is a dataset of 28 servers,
and each server has 38 KPIs[5]. CTF published a dataset of 533
servers, and each server has 49 KPIs, including CPU (15 KPIs),
Memory (10 KPIs), Sockets (6 KPIs), UDP (7 KPIs), TCP (11
KPIs)[10]. Some private datasets are also described in previous
works. TC_data is a dataset of over 500 entities, and each entity
has 11 KPIs such as CPU usage, memory usage, and network
speed[11]. FluxRank uses 47 types of KPIs, including CPU (8
KPIs), Disk (15 KPIs), Memory (6 KPIs), Network (13 KPIs),
and OS kernel (5 KPIs)[20].

However, current monitoring tools provide a huge number
of KPIs, considering the complexity and diversity of hosts and
services in systems. One entity may contain multiple components
and each component may have multiple KPI groups providing
different metrics. Each KPI group may have multiple parameters,
such as network interfaces for network KPIs and CPU cores for
CPU KPIs. Taking host monitoring as an example, the agent
node exporter[21] of Prometheus[14] exports a series of OS and
hardware metrics exposed by OS kernels, and the dashboard node
exporter full[22] of Grafana[15] performs queries to Prometheus
and visualize the time series for operation engineers. By default,
node exporter provides various KPIs of Network, CPU, Memory,
and efc., as shown in Table I. In our scenario of monitoring
servers in a cloud system, the number of KPIs reaches 493. The
comparison between existing datasets and the data in our practice
is shown in Table II.

TABLE I: The categories of KPIs and the numbers of KPIs in
the categories provided by node exporter for virtual machines in
our practice

Component Examples of KPI groups Number of KPIs
basic CPU / Memory / Net / Disk 37
Traffic (Packets, Errors, Drops, efc.) 145
Network Sockstat (TCP, UDP, FRAG/RAW, efc.) 14
Netstat (IN/OUT, Forwarding, 27
ICMP, TCP, UDP, etc.)
CPU Usage, Softnet 9
Basic, RAM Total 8
Memory Physical (Active/Inactive, Writeback, 35
Committed, Dirty, efc.)
Virtual (Pages In/Out, Page faults, erc.) 8
Basic, RootFS, SWAP Total 8
Storage Disk (IOps, R/W Data, etc.) 15
Filesystem (Space, Error, Node size, efc.) 35
Processes (Status, Schedule, efc.) 10
System Misc (Context Switchanterrupts, 1
Load, Schedule Timeslices, efc.)
Systemd 26
Time Sync 8
Hardware Temperature, Cooling, Power 4
Node Exporter Scrape Time 93
Others Uptime 1

TABLE II: Comparison of KPIs’ number and descriptions in open
datasets and research works with the data in practice

Dataset KPI Num KPI Description in Dataset

SMD[5] 38 CPU, network and memory usage, efc.

CTF[10] 49 CPU, memory, sockets, UDP, TCP
TC_data[11] 11 CPU usage, memory usage, and network speed, efc.
FluxRank[20] 47 CPU, Disk, Memory, Network, and OS kernel
Node Exporter 493 All KPIs provided by node exporter

Thus, the first aspect of the gap is that the whole number of

KPIs is far more than the number in existing datasets. If the
entire data are applied to the existing multivariate TSAD models,
the scalability of the models on the KPI dimension will be a
challenge, which will be discussed in Section III.

The second aspect of the gap is that the necessary metadata
of KPIs, such as name, parameter, and unit, are usually missing
in existing open datasets. Most previous work only focuses on
refining models for mining information from given time series
datasets. The KPI selection for creating the existing datasets
was made by researchers or engineers manually based on their
experience, with the selection procedure or standard not clearly
explained. Furthermore, considering the variety of workloads and
components/devices in different systems, there is a high chance
that there are not exactly the same KPIs across different systems.
So existing open datasets do not help much for the KPI selection
task in applying TSAD models to a real system.

The third aspect of the gap is that most existing open datasets
do not provide information on relationships between errors and
KPIs. So it is not clear which KPIs are sensitive to what types of
errors. Then, given a list of specified types of errors, these existing
datasets do not provide guidance on which KPIs are more useful
for the detection.

III. PERFORMANCE LOSS OF MULTIVARIATE TSAD WITH
MANY KPIs

We encountered a phenomenon in our practical experience:
current multivariate TSAD models have a performance loss when
there are a huge number of KPIs. Current multivariate TSAD
models were reported to work well on open datasets [6, 9].
However, in our practice, the models’ accuracy decreases when
the number of KPIs increases.

A. Multivariate TSAD

The multivariate Time Series Anomaly Detection problem is
that, given the multivariate time series in the normal state as
the training input, and the multivariate time series in uncertain
(normal or anomalous) status as the testing input, the model
should judge whether the time series is anomalous at each
time point in the testing input. Rather than using univariate
methods and training and maintaining a model for each KPI,
we use multivariate methods for the following reasons. First,
the multivariate TSAD methods can reconstruct the time series
with more information of the KPIs of the entities and model the
overall status of entities. Second, considering the large number
of KPIs, training and maintaining a model for each KPI has a
much higher overhead. Third, the relation between KPIs and the
relation between KPIs and anomalies are complex and then we
should define rules to determine the anomalies in the entity level
from the anomalies from the KPI level[5].

Current multivariate and unsupervised TSAD models learn
the features of time series from the normal time series, then
distinguish anomalous time series that are different from the
normal ones. As shown in Figure 1, these models employ
reconstruction-based unsupervised methods. These methods are
based on autoencoders (AE) or variational autoencoders (VAE)
which consist of an encoder and a decoder. The specific neural
network models of the autoencoders can be MLP, LSTM, or
Transformer. All KPIs are normalized into the same scale by

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

means of methods like min-max scale or standard scale before
the KPIs are fed to the autoencoder models (see Figure 1). The
encoder maps the input into a latent vector Z, and the decoder
decodes Z back to a reconstruction Wt.

Multivariate Recons
time series =~ i
w=xWw truction c%re
win w w Loss
& -1] ~
:‘~\\ z /’, \ \ k ky Ly
~ | - 1
: i ! e
1 1 1
1 Encoder, | |1Decoder, L
| i " '
: ! : 1 A Roneq, Km-1 % Ly
1
1

\
\
\
1

1
~a

\

Fig. 1: The structure of a Multivariate TSAD model

The main training objective of these models is to let the
reconstructed data be as close as possible to the original data
by minimizing the reconstruction loss[6, 8, 9, 11-13]. The
reconstruction loss of multivariate time series L; at time ¢ is the
average of the reconstruction loss of each KPI:

L= L
i=1

where the number of KPIs is m, the reconstruction loss of each
KPI L; ; is:

€]

Liy = [lkie — kiel3 2

where || - ||2 denotes the L2-norm, the origin data k; ; is the

origin data of the i-th KPI's input window at time ¢ and lAq’t is
the corresponding reconstructed data.

In the predicting phase, the reconstruction loss is used as
the anomaly score. The time points with higher scores than the
threshold are considered anomalies. It is based on the assumption
that the autoencoder can only reconstruct the encountered data
patterns and will reconstruct worse results when encountering
abnormal data patterns.

B. Performance Loss of Anomaly Detection with Many KPlIs

We conducted experiments to study the performance loss
phenomenon as the number of KPIs increases. We created a
synthetic dataset that mimics the situation in which one KPI
responds to an error, and other KPIs remain normal when the
error is present, and let the AnomalyTransformer model processes
the dataset (i.e. part of the dataset for training and the rest for
testing) for detecting the anomaly.

As shown in Figure 2 (the horizontal axis is time), this dataset
contains m time series, and each time series are samples of

Time Series 0 (anomolous)

AN

Time Series 1 (redundant)

ANNANNN

Time Series m-1 (redundant)

ANNNANNN

Fig. 2: Schematic diagram of the synthesized time series dataset

2,54

0.0+

2,54

0.0+

2,54

0.0+

186

o ______

AnomalyTransformer Model

Ano-
maly
Atte-
ntion

Feed ;

Forw- —PT—D Layer -;-»
Norm [}
ard i
i

Reconstru
ction

Layer

>0 Norm |

Fm-1,e41 Kin-1¢

km,es1 Kt

Fig. 3: How the multiple KPIs are fed into the
AnomalyTransformer model as input in our experiments

a sine wave (sin(t), t is the time), with noises in the normal
distribution added to the samples. Noises in KPI time series data
are inevitable in real systems. Then one of the m time series is
injected with data to mimic a period of anomaly (yellow period
in the figure), as indicated by the Time Series O in the figure. All
the other time series (from 1 to m — 1, called redundant time
series) remain normal all the time, i.e. they all show a sine wave
with different noise values added. Note that Time Series O here
is a simplified example to show an evident error for the purpose
of clearly explaining the performance loss issue.

Our experiments employ the Multivariate TSAD setup shown
in Figure 1. How the KPIs are fed into the model is illustrated in
Figure 3. ki, ki ¢++1, ... is the stream of the normalized KPI k;
(1 < ¢ < m). The streams of all m KPIs within a time window
are combined as a matrix X and fed to the AnomalyTransformer
model as the input. Figure 3 also shows AnomalyTransformer’s
structure (the encoder-decoder in Figure 1). More details on the
model’s handling of the input X can be found in [9].

We ran multiple experiments with m varying from 2 to 64.
The AnomalyTransformer model sizes in the experiments, in
terms of the number of parameters (weights), are different as the
encoder’s input layer and the decoder’s output layer have the sizes
associated with the KPI number (other layers have same sizes for
all m): the encoder and decoder’s sizes are 4753432 and 1026
for m=2, and 4848664 and 32832 for m=64, respectively. The
training set has 9901 samples for all experiments.

Figure 4 presents the anomaly scores obtained in our experi-
ments. We can see that when the number of KPIs of the dataset,
m, is 2, the anomalies can be easily detected from the anomaly
scores (the top picture of Figure 4). However, when the number
of KPIs increases to 16 and 64, the anomaly scores during the
error-present period become not so outstanding both in terms
of absolute values and comparisons with other values, and there
are much larger fluctuations of the anomaly scores caused by the
accumulation of so many KPIs’ noises. As a result, the number of
false positives (red lines in the figure) increases when the number
of redundant KPIs increases. Similar experimental results are also
observed for the USAD model. We also tried experiments with
larger models and larger training sets, which demonstrated the
similar performance loss.

C. Explanation

The anomaly detection task is different from traditional deep
learning tasks like regression and classification, whose prediction
is consistent with their training objective. In the anomaly detec-
tion task, the anomaly scores are calculated as the reconstruction
loss of the model output indirectly, instead of the direct output
of the deep learning model.

On one hand, the anomaly scores can only be calculated as the
averages of the reconstruction loss values of all KPIs (equation

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

Anomaly Score, m=2

471 —— True Positive
—— False Positive
24 Anomaly j
~ = Threshold J
0= " ~-|

Anomaly Score, m=16

s il

Anomaly Score, m=64

0.5 1

00 il .‘ li IJ[I il IHH[\ | i |1| l

Fig. 4: Anomaly Detection results of AnomalyTransformer with
different redundant KPI numbers m. The dash lines indicate the
thresholds of the reconstruction loss for anomaly detection. The
scale of the score (the vertical axis) decreases as m increases
because of the definition of the reconstruction loss in formula
(1). With more KPIs the denominator increases while the nu-

merator does not increase proportionally (most KPIs have low
reconstruction loss).

o

—— input
reconstruction
—— reconstruction loss

T T T
° o o
N} w >

input value
reconstruction loss

T
o
o

0.0

Fig. 5: Reconstruction and reconstruction loss of one sine time

series with noises by AnomalyTransformer

1). Existing unsupervised learning-based models assume that the
user does not have anomaly data in the training phase because
of the scarcity of anomaly data and the difficulty of labeling
anomalies[6, 9]. Thus the models are only trained with the
data with normal data and not instructed to place attention onto
specific KPIs. As a result, the models do not know the importance
of individual KPIs for anomaly detection.

On the other hand, deviations exist in the reconstruction loss of
each KPI due to the existence of noises. Ideally, the reconstruction
loss should be very low, near zero, when reconstructing normal
data whose patterns have been seen by the autoencoder. However,
many KPIs have high-frequency noises in random distributions.
We let the AnomalyTransformer model process time series data
with a single KPI, the sine curve, and added noises, and obtained
the model’s reconstruction of the data as well as the reconstruc-
tion loss at every time point. No error is injected in this process.
Figure 5 charts the input time series data, the reconstruction of
the data, and the reconstruction losses along the time. The figure
shows the reconstruction loss fluctuates a lot and sometimes has
quite high values, and note that there is only a single KPI in this
figure. The result shows the noises are hard for the autoencoder-
based multivariate TSAD models to reconstruct precisely, even
when reconstructing the time series in the normal state. As noises
are inevitable in KPIs of practical systems, the deviations of the
reconstruction loss of KPIs are also inevitable.

When the number of KPIs is not so large, certain existing
models are still reported to work well[6, 9] with deviations in re-
construction losses. This is because the change of reconstruction

187

loss in an anomaly state is significantly greater than the fluctua-
tion range of the deviations when the number of KPIs is small.
As the number of KPIs increases, the deviations are accumulated
by adding up all KPI's reconstruction loss values and finally go
beyond the anomaly-caused reconstruction changes. Assuming
the deviations n; are in the normal distribution, n; ~ N (u;, 02),
the sum of the deviations n = ;" n, is also in the normal

distribution,
m m m
W= N 3)
i=0

i=0 =0

3

which has an accumulated variance. With the accumulated
deviation comparable with or larger than the anomaly score
caused by errors, the models fail to detect the anomalies as
accurately as in the cases with a limited number of KPIs.

A straightforward way to deal with this performance loss is to
design an anomaly detection model for each KPI and vote among
them. However, this design may result in hundreds of neural
models and is not practical at all. Moreover, KPI correlations
may be more complicated than a simple voting of multiple
KPIs’ anomaly detection results. A single neural model may
better exploit such correlations. Therefore, properly selecting
KPIs for anomaly detection is necessary to ensure TSAD models’
performance.

This paper focuses on one particular issue of current KPI-based
anomaly detection approaches, KPI selection, and we studied it in
normal-load behavior. Intermittent heavy loads may result in KPI
values drastically different from their normal values, and such
situations may be flagged as anomalies incorrectly. Continuous
machine learning may help deal with such heavy-load caused
false positives, but it is not in this paper’s scope.

IV. PROPOSED METHOD

This section introduces the proposed Fault-Injection-Based
Automatic Selection of KPIs (fKPISelect), shown in Figure 6.
fKPISelect proposes a flow path of KPI selection from predefined
error types to the error-sensitive KPI (the KPIs that respond to
the errors) list for anomaly detection, solving the gap between
existing datasets (Section II) and letting the multivariate TSAD
models avoid the performance loss when dealing with many
KPIs (Section III). fKPISelect leverages fault injection to gain
knowledge of sensitive KPIs to specified errors and anomaly
detection models to measure the sensitivity of KPIs. fKPISelect is
compatible with existing multivariate TSAD methods, replacing
human work with automated work in the data processing of
anomaly detection models.

A. Criterion Measuring Sensitivity of KPIs

The sensitivity of KPI is defined as whether the KPIs respond
to the errors. Different from examining the huge amount of
KPIs by humans through visualization, a quantitative criterion
measuring the sensitivity of KPIs is required for automatic
selection. However, directly accessing KPIs’ sensitivity to the
errors is a complex problem. Thus we use fault injection and
convert the criterion Is the KPI sensitive to the errors? to the
question Does the KPI behave anomalously when the errors
occur?. Then as anomaly detection models are a ready tool to
judge whether there are anomalies, the question is converted to

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

A. Fault injecti

Fault Injection

E%rs

FSAS-KPI\

Experimental

— __—J

Target

System

|Tra|n|ng I
Set Test Set
Model
Training

—4
Models 1—]

Full KPI
Data

Model
| Inference

Scores
of KPIs

System

Threshold o Threshold B

—
Full KPI
Data

+ [sensitivity
= JofKPIs

H Pre-

1 | selection
E Pre-selected
s kpitist =

Error-sensitive
KPI List

Data Pre-
processing

Extended
Selection

% D. Selection

Selected

KPI Data

® |
[\

Model
Training

Fig. 6: The overview of fKPISelect and its interaction with anomaly detection system

Do the anomaly detection models recognize the anomalies in the
KPI when the errors occur?.

Unlike existing methods like clustering[23] that purely reduce
KPI numbers, fKPISelect focuses on reducing KPI types. Fault
injection is used for inspecting the relationship between errors
and KPIs [24]. Univariate anomaly detection models are used to
judge whether there are anomalies in each KPI when the errors
occur. Because the univariate anomaly detection models can not
accurately recognize the anomaly every time for the randomness
of the model and the KPI data, to achieve more accurate sen-
sitivity calculation, fault injection should be performed several
times with the same or different configurations for one error type.
After getting the predicted labels of the models, whether the error
events have been detected by the model is determined by whether
there is at least one positive label during each error event. Thus
the sensitivity of a KPI is defined as the recall value of the error

events
’ NUMAKit_errors,i

“
NUMerrors

where numpit_errors,: 1S the number of errors correctly pre-
dicted by the model for i-th KPI, and nume,.ors 1S the total
number of injected errors. Then we can select KPIs with higher
sensitivity values by setting a threshold.

Other potential choices of the sensitivity of KPIs include the
F1 score of the models (a widely used evaluation measure for
classification tasks that is the harmonic mean of precision and
recall) and the output anomaly scores by the models. However,
compared with the F1 score that has various definitions with
adjustment for time series[25], recall of the error events enables
us to further apply the voting mechanism (discussed in Section
IV-B2). And as the number of positive points is equal when we
fix the anomaly ratio, a higher recall roughly leads to a higher
F1 score. Moreover, anomaly scores rely on anomaly detection
models and vary in different KPIs, thus can not be used for
comparison. So, using recall is reasonable and practical.

sensitivity; =

B. fKPISelect Mechanism

1) Fault Injection: As shown in part A in Figure 6, first,
a set of concerned types of errors should be specified as the

188

input of fKPISelect. Fault injection tools[26-28] are used to
inject various types of errors into services and servers. Then,
plan several error configurations in detail for each specified error
type. The error configurations include intensity, target, random
changes, efc., varying in different error types. After that, perform
the fault injections in the experimental system that imitates the
target system or is sampled from the target system and has similar
workloads with the target. The fault injections are organized in
fault injection campaigns [29]. Each fault injection lasts for a
period of time to wait for the spread of the errors. The fault
injection logs from tools are recorded to label the anomalies.
Finally, collect the KPI data during the fault injection for the test
set and the error labels within the error logs. An example of how
the fault injections are planned and performed in our practice is
introduced in Section VI-B.

2) KPI Sensitivity Calculation: As shown in part B in Figure
6, we calculate the KPI sensitivity and perform KPI selection
on it. Univariate anomaly detection models are trained with the
normal data in the training set collected in the experimental
system for each KPI. Then the test data are input to perform
the model inference. The output anomaly labels of the models
and the error labels from error logs are used to calculate the
sensitivity introduced in Section IV-A. Instead of finding the best
threshold for each model, we fix the anomaly ratio of anomaly
scores to one global value across different KPIs for comparison
of sensitivity.

As fKPISelect uses the anomaly detection results of the in-
jected errors for KPI selection, the accuracy of KPI sensitivity
depends on the performance of the anomaly detection models,
thus the inaccuracy of the models will lead to the inaccuracy
of sensitivity calculation. One type of the inaccuracy is false
negative: a KPI responds to the error, but the anomaly detection
model fails to flag the anomaly. In this situation the KPI's
response is not intense enough for this anomaly detection model.
The other type is false positive: during an error, a KPI doesn’t
respond to the error, but the model flags an anomaly falsely. This
leads us to wrongly select an insensitive KPI as a sensitive one.
Note that the false negative and false positive terms used here

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

are for the KPI selection, and are not for analyzing final anomaly
detection results.

Inspired by ensemble learning[30], which uses multiple algo-
rithms to reach a better performance than one alone algorithm,
we apply a voting mechanism to identify the detected anomalies
during the error events. We use multiple models to give a result
of the detected anomalies during the error events separately. If
over half the number of the models recognize the anomaly in one
KPI during one error event, we decide that the models recognize
the anomaly in this KPI during the error event, otherwise, the
models don’t recognize the anomaly in this KPI during the error
event. Finally, the voted results lead to better KPI selection.

3) KPI Clustering: One more problem is the false ignorance
of possibly error-sensitive KPIs. Although fault injections can
efficiently reveal the KPIs related to the injected errors, we can
only perform part of the error configurations of one specified error
type. Directly selecting KPIs for the performed fault injection
configurations leads to a risk of ignoring error-sensitive KPIs
that are also relative to the error type but not tested, which may
reduce the generalization performance of the anomaly detection
model.

To address this challenge, when we have selected some KPIs,
KPIs that have similar properties to the selected KPIs are also
should be selected. To find the KPIs with similar properties,
selecting the KPIs which have similar shapes to them should
also be selected. Because some KPIs with similar properties are
similar in shape as the same workload of the entity influences
them. A shape-based clustering[23] method is used to find similar
KPIs, as shown in part C in Figure 6. Then, the cluster results
will be used for an extended selection of KPIs in the next step. If
the data has information on how KPIs are clustered, predefined
clusters can also be input to the cluster method.

The shape-based distance of 2 KPIs is the max normalized
cross-correlation of the selected windows of 2 KPIs. HDBSCAN
is adopted for it only depends on the input distance matrix and
parameter minPts (the minimum number of points within one
cluster).

4) KPI Selection: As shown in part D in Figure 6, the pre-
selection and extended selection are done to generate the final
error-sensitive KPI list. First, a threshold of sensitivities of KPIs
« is defined, and the KPIs with sensitivities higher than the
threshold are selected. Then, a selecting ratio of each cluster
is calculated as the proportion of the selected KPIs to the total
KPIs in the cluster. A threshold of selecting ratio (is set and
the KPIs in clusters that have higher selecting ratios are added
to the extended list of KPIs.

The intuition behind the two thresholds is below. We first
select a set A of KPIs based on fault injection results by using
the threshold «, and then select another set B whose properties
(curve shapes) are sufficiently resembling those in A by using
the threshold (3. The final selected KPIs are A+B.

5) Model Training and Online Anomaly Detection: As shown
in Figure 6, with the error-sensitive KPI list applied to the data
processing, users can train the multivariate TSAD model on
the selected KPI data and apply the model to online anomaly
detection. The knowledge of selected KPIs is directly transferred
from the experimental systems to the production systems in our

189

practice because the running logic and KPI types are consistent
across the experimental system and the target.

V. IMPLEMENTATION

A fault injection tool is implemented with Ansible (An IT
Automation tool)[31] as the controller and t ¢ (traffic control)[26]
and stress—ng[27] as the executors. The controller manages
the fault injection campaign, generates fault injection commands,
and sends them to executors. The executors execute the com-
mands in the target machines.

fKPISelect is implemented based on PyTorch[32] and
Numpy[33]. USAD[6] and AnomalyTransformer[9] were used
in fKPISelect to calculate the sensitivity of KPIs, then the two
models voted for the selected KPIs.

VI. EVALUATION

A. Experimental Setup

Target Full KPI List
System =
Error-unclear data
| SMD I | CTF I

s [
1

Experimental System
¢ “Fault "
\/njection |

Error-clear data

Error Type,
| Node data I | — |

Error-sensitive
KPIList

Error-KPI map

I FSAS-KPI

‘Anomaly
Detection Result

Separate Server

Fig. 7: The overview of the Experimental Setup

As shown in Figure 7, first, we build an experimental system
that imitates the target system. Second, we perform fault injection
in the experimental system and collected the data. Then fKPIS-
elect is deployed to select error-sensitive KPIs. Subsequently,
we use the error-sensitive KPI list to preprocess the dataset.
Finally, the data preprocessed is used for anomaly detection and
the anomaly detection results were analyzed. Experiments are
performed on SMD, CTF, and Node_data (introduced in Section
VI-B) separately.

In our scenario, the target system is a production cloud
system containing thousands of nodes. However, labeling the
data collected from the target system is painstaking, and at the
same time, there are too few anomaly samples in the target
system’s data. Therefore, we build an experimental system with
real workloads, and we monitor the experimental system using
the same KPIs as in the target system. The experimental system
is a 5-node distributed system with a container cloud platform
Kubernetes[34] cluster deployed on it. Each node has 8 logical
CPU cores and 16GB memory with the Ubuntu 20.04 LTS. We
generate workloads on the experimental system similar to the
target system. Sock-shop microservice [35] is deployed. We use
the load testing tool Locust[36] running out of the experimental
system to manage the users with the number changes among
50-150 periodically and 100 queries per second to send HTTP
requests to Sock-shop. We use Prometheus[14] for service and

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

host metric collection. To maintain consistency with the target
system, we employed the node exporter [21] software to collect
data for the same set of KPIs.

The KPI selection and Anomaly detection experiments were
performed on the Separate Server. The server has a GPU of
GeForce RTX 3090, a CPU of Intel Xeon Silver 4214R 2.4G,
which has 48 logical CPU cores, and 188GB memory with the
Ubuntu 22.04 LTS Linux system.

Here we describe the hyperparameters for USAD and Anoma-
lyTransformer training. For both models, the number of training
epochs is 10 and the window size is 5. For the USAD model,
the batch size is 10000. For the AnomalyTransformer model, the
batch size is 256. During training, an early stop strategy is applied
according to the validation loss at the end of each epoch.

B. Datasets

As shown in Figure 7, we used Node_data, SMD, and CTF
datasets in the experiments. The existing datasets, SMD and
CTF, are introduced in Section II, while the real-world dataset
Node_data is introduced here.

The data collected from the experimental system with fault
injection were called Node_data, which is a dataset that has 493
KPIs. The training set and testing set both contain 7 days of
KPI data from 5 machines with an exporting interval of 15s. We
injected four types of anomalies that widely exist in common
computing systems[37], described below:

Network Anomalies. Network anomalies, including network
packet delay, network packet loss, and network packet duplicate,
are injected by tc to emulate the s of network interfaces, the
operating systems, and the interconnection of the network.

High CPU consumption. Anomalous high CPU consump-
tions are injected by stress-ng to emulate the situation
that anomalous programs fell into infinite loops, busy waits, or
deadlocks.

Memory leaks. Anomalous memory leaks are injected by
stress—ng to emulate the situation that allocated chunks of
memory are not freed after use and then the accumulation of
memory leaks causes memory shortage and system failures.

Anomalous number of disk access. Anomalous high number
of disk accesses is injected by stress-ng to emulate the
situation that a high number of disk retries is caused by disk
access failures or a high number of disk accesses from anomalous
programs.

Each fault injection campaign contains one fault injection
experiment. In each fault injection campaign, the workload runs
for 40 minutes. The error is injected in the period between 20
minutes and 23 minutes. As the anomalies are rare in practical
systems, to ensure that the detection of the errors is not influenced
by the near errors, a 37-minute gap between two injections can
successfully prevent models with high window sizes such as 100
(the duration of a window is 100 x 15 seconds or 25 minutes).

In our evaluation, both KPI selection and anomaly detection
require datasets. The datasets for KPI selection and for anomaly
detection should not overlap. Therefore, we split a dataset into
two parts, one for KPI selection and the other for anomaly
detection, accounting for 30% and 70% respectively. As shown
in Figure 8, a dataset consists of time series data of m nodes,
we divide the original training set and test set according to the

190

time, and then recombine the training set and the test set, Ty + 7%
time period data for KPI selection, and 77 + 75 time period data
anomaly detection.

Training set Testing set

—_—
“Tg==Tj T T3
30% 70% 30% 70%

Node 1

Node 2

Node n -
time

:Data for KPI selection, T is the training
set and T is the testing set.

:Data for evaluating the performance of TSAD models,

T, is the training set and T3 is the testing set.
Fig. 8: Dataset segmentation for KPI selection and performance
evaluation

C. Evaluation Measures

The measure to evaluate the performance of TSAD models
should be defined because of the special properties of time
series. The anomaly detection models give an anomaly label
to each time point. Anomaly detection can be treated as a
classification task and evaluated by precision, recall, and F1 score.
Precision measures the proportion of true positive predictions out
of all positive predictions, recall measures the proportion of true
positive predictions out of all actual positive instances, and F1
score is the harmonic mean of precision and recall. Previous
works widely use the Point Adjustment strategy: if any point
in an anomaly segment in the ground truth can be detected by a
chosen threshold, then say this segment is detected correctly, and
all points in this segment are treated as if they can be detected
by this threshold[5, 6, 9, 38]. For threshold selection, we don’t
check all possible thresholds and search for the best F1 score
because in practice there are no ground truth labels for searching
for the best result. Instead, we select a suitable fixed anomaly
ratio for each model.

D. Comparisons

We conduct a series of experiments on SMD, CTF, and
Node_data. We first apply fKPISelect (using both USAD and
AnomalyTransformer for voting) to preprocess each dataset,
and then employ USAD or AnomalyTransformer for anomaly
detection on the preprocessed data. We do not apply other filtering
of KPIs such as pruning of constant-value KPIs. Because certain
constant-value KPIs may indicate errors, e.g. “Network Traffic
Errors, Network Traffic Drop, TCP Errors” in our cloud’s KPIs
remain as O for a long time and their value changes indicate
certain errors. So, directly pruning them away automatically may
not be good.

Table III presents the performance of anomaly detection using
USAD and AnomalyTransformer on SMD, CTF, and Node_data
datasets after different data preprocessing techniques. The thresh-
old « is 0.08 and the threshold 3 is 0.80 in the experiments. For
each dataset, we compared the performance of using all KPIs
(Full), manually selected KPIs (Manual), and KPIs automatically
selected through fKPISelect preprocessing. For the Node_data
dataset in Table III, the KPIs associated with the Full prepro-
cessing are all of the 493 KPIs directly collected from our cloud
system via Prometheus. fKPISelect selected 49 KPIs from these
493 KPIs. To compare fKPISelect with manual KPI selection,

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison of Anomaly Detection Performance

Dataset Preprocess USAD AnomalyTransformer

Precision Recall F1 score Precision Recall F1 score

Full 0.3847 0.4088 0.2756 0.5625 0.8571 0.6792

Node_data Manual 0.4610 0.7976 0.5843 0.6296 0.9285 0.7504

fKPISelect 0.4702 0.8069 0.5942 0.8461 0.9897 0.9123

Full 0.6509 0.6533 0.6521 0.9414 0.8901 0.9151

SMD Manual 0.6800 0.7100 0.6946 0.9424 0.8354 0.8856

fKPISelect 0.6082 0.8110 0.6951 0.9421 0.9247 0.9338

Full 0.2976 0.3439 0.3190 0.9047 1.0000 0.9500

CTF Manual 0.2976 0.3440 0.3191 0.9051 1.0000 0.9502

fKPISelect 0.4534 0.5598 0.5010 0.9070 1.0000 0.9646

TABLE IV: Comparison of the time and space cost

USAD AnomalyTransformer
Dataset Preprocess KPI Numbers Training Detection time Model Training Detection time Model
time (sec) per sample (sec) size (KB) time (sec) per sample (sec) size (KB)
Node data Full 493 292.75 8.54E-3 45250.67 361.34 1.56E-2 32525.59
- fKPISelect 49 59.11 5.16E-4 518.92 63.28 1.47E-3 28971.91

experts select KPIs based on the visualization of the KPIs in
the training set and the test set, and the KPI metadata (only
in Node_data). We kept the number of manually selected KPIs
consistent with the number of automatically selected KPIs.

Node_data, containing a larger number of KPIs than other
datasets, exhibited the most significant performance improvement
after KPI selection. Compared to using all KPIs for anomaly de-
tection, with fKPISelect preprocessing, the F1 score is improved
from 0.28 (0.2756 in Table III) to 0.59 for USAD and from 0.68 to
0.91 for AnomalyTransformer. Although SMD and CTF datasets
were preprocessed before being published, applying fKPISelect
preprocessing still lead to performance improvements.

We also ran experiments of random KPI selection on the SMD
dataset while using the AnomalyTransformer model. The random
selection achieved the 0.82 F1-score, much worse than the three
selections compared in Table III) (all over 0.88).

Table IV presents a notable decrease in the time and space
cost of USAD and AnomalyTransformer after applying fKPIS-
elect. The Node_data dataset is used for evaluation, with two
preprocessing approaches: Full, representing the use of all 493
KPIs, and fKPISelect, where 49 selected KPIs are utilized. The
Training Time (sec) refers to the duration required for model
training. The Detection time per sample (sec) represents the time
that the anomaly detection model process each individual data
sample. Model size (KB) denotes the storage occupied by the
models. The reduction of the input number of KPIs leads to a
smaller model size and shorter training and predicting time. The
USAD’s model size is reduced by 98.85% (from 45250.67 to
518.92) because USAD leverages full connect layers with the
input and output shape proportional to the number of KPIs.

E. Ablation Study

To validate the effectiveness of our fKPISelect design, we
conducted a series of experiments on the Node_data dataset,
including: (i) cluster: Using the straightforward method of clus-
tering to reduce the number of KPIs, as introduced in Section
I. (i) -vote: Removing the voting mechanism. (iii) -cluster:
Removing the clustering mechanism. (iv) -vote,F1: Using F1
score as the sensitivity of KPIs, at the same time removing the
voting mechanism because of incompatibility.

The Node_data dataset can be clustered into 8 classes by their
shapes, in experiment (i), we randomly select 6 KPIs in each

191

cluster. In experiments (ii) and (iv), the AnomalyTransformer
model was used to calculate the Sensitivity of KPIs. In experiment
(iii), KPIs were directly selected based on their Sensitivity
rankings without extended selection. The KPI numbers of the
experiments (ii), (iii) and (iv) are all 49.

As shown in Table V, the experiment that uses the straight-
forward method of clustering to reduce the number of KPIs has
the lowest F1 score, since the algorithm only clusters KPIs and
cannot select useful KPIs for anomaly detection. The removal
of the voting mechanism (-vote) has a greater impact than the
clustering mechanism (-cluster), which demonstrates that the
voting mechanism plays a more important role in KPI selection,
and the anomaly detection ability of different models is a more
important factor to consider. The result of -vote, F1 shows
that using F1 score as the sensitivity has a similar effect as
using recall, but using F1 score is incompatible with the voting
mechanism.

TABLE V: Anomaly Detection Performance of different design
of fKPISelect

Preprocess USAD AnomalyTransformer
Precision Recall F1 Precision Recall F1
score score
cluster 0.4873 0.2765 0.3528 0.6101 0.8571 0.7128
-vote 0.4264 0.4795 04514 0.6605 0.8861 0.7569
-cluster 0.4864 0.6222 0.5460 0.7066 0.9518 0.8246
-vote,F1 0.4542 0.5530 0.4988 0.5726 0.8874 0.6961
fKPISelect 04702 0.8069 0.5942 0.8461 0.9897 0.9123

FE. Sensitivity Study

In Figure 9, we investigate the effect of the number of injected
errors of one error type on the KPI selection result. We take the
KPI list’s overlap ratio with the top-K sensitive KPI list calculated
with an error number of 100 as the criterion. When the number
of error events is 10, the overlap ratio of top-K-sensitive KPIs
(except top-100) is over 0.7. When the number of error events
is 10, the overlap ratio of top-K-sensitive KPIs (except top-100)
is over 0.8. Thus, if time is limited, performing 10 or 20 fault
injections can reach similar results with higher numbers of fault
injections.

G. Study on the Result of fKPISelect

This section introduces a study on the result of fKPISelect,
including the relationships between KPIs and errors, and the
analysis of properties of selected and unselected KPIs.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

Overlap ratio
°

— top-40
—— top-50
— top-100

20 40

Number of fault events

80 100

Fig. 9: The overlap ratio of top-K KPIs calculated with different
error numbers and those calculated with an error number of 100

TABLE VI: The samples of selected KPIs sensitive to different
types of errors

Error Type Samples of Selected KPIs

Network Network Traffic, CPU Usage, Network Errors, efc.

CPU CPU Usage, Seconds spent by processes waiting
for CPU, Network Traffic, etc.
Memory RAM Usage, Memory used by user-space
applications, Memory Page Faults, efc.
Disk CPU Usage, Disk Queue Size, Disk I0ps
Completed, efc.

1) Sensitive KPI to Different Error Types: We used fKPISelect
to select KPIs from Node_data. The samples of selected KPIs
sensitive to the four injected types of errors are shown in Table
VI. From the results of the automatic KPI selection, here is some
inspiration we summarize for host monitoring:

« Resource usage is generally sensitive to errors. For
common workloads and error types, KPIs of resource usage (CPU
usage, RAM usage, and Network traffic which can be seen as
bandwidth usage) is important metrics for monitoring the system,
which is consistent with prior experience.

o Monitor multiple components’ KPIs in one entity. For
each error type, the sensitive KPIs are related to various KPIs.
As shown in Table VI, errors in CPUs can lead to anomalies
in Network Traffic and errors in disk and network can lead
to anomalies in CPU usage. The reason is that the workload
is processed with the cooperation of each part. Thus anomaly
detection of multivariate time series of multiple components’
KPIs is worthwhile to monitor the overall status of entities.

« Involve process data in host monitoring. Some errors can
be revealed by KPIs related to processes, such as the time spent by
processes waiting for CPU. Although this type of KPI is ignored
by previous datasets[5, 10], the statistics of processes provided
by systems are also valuable to be monitored for host monitoring.

2) Comparison Between Selected and Unselected KPIs: Fig-
ure 10 shows the selected and unselected KPIs separately, where
the x-axis is the time, the y-axis is the value of the KPI, and the
yellow region indicates that anomalies occurred during the time
period. Two selected error-sensitive KPIs to memory errors are
shown in Figures 10a and 10b, where both KPIs suddenly increase
when the memory error occurs and fall back when the error
recovers. Figures 10c and 10d show the shapes of two clusters
of unselected KPIs, and we select ten KPIs from each cluster to
draw them in different colors. Figure 10c is the cluster of KPIs
that fluctuate very little during both normal and anomaly periods,
and Figure 10d is the cluster of KPIs that fluctuates greatly during
the two periods. In general, fKPISelect tends to select KPIs that
fluctuate obviously during anomaly periods and disregard those
not changing much relative to normal fluctuations.

192

RAM Usage

Fout period
6 20000
o
. 15000
- H
I3 £ 10000
< 78
76 5000
7
, " L
Fault period o I I L
3 S0

2000

Memory Page Faults

1000 1500 2500 [500 1000 1500 2000 2500
Time points Time points

e poi

(a) RAM Usage (b) Memory Page Fault

Fault period

Fault period

a0
20

1] 500

Lol

1000

NN

1500 2000 2500 0 500 1000 1500 2000 2500

(c) cluster of unselected KPIs 1 (d) cluster of unselected KPIs 2

Fig. 10: Two examples of selected error-sensitive KPIs to memory
errors, and two example clusters of unselected KPIs

VII. RELATED WORK

In recent years, numerous works have researched Multivariate
Time Series Anomaly Detection (TSAD). The mostly concerned
research points include mining more information in general
TSAD tasks, such as OmniAnomaly[5], USAD[6], SDF-VAE[7],
InterFusion[8], AnomalyTransformer[9]; improving the scalabil-
ity of the entity monitoring, such as CTF[10], UniAD[11]. The
detailed design of these methods is discussed in section III.
However, none of them take how to select suitable time series to
represent a whole entity as a question at the preprocessing stage.
Another problem with these works is that these improvements are
incompatible with others. Currently, some research works focus
on the dataset quality and evaluation methods to make anomaly
detection research more practical to real-world systems[39, 40].

Several works focus on the engineering of KPIs for anomaly
detection. The most popular methods include applying clustering
algorithms to KPIs. ROCKA[41] proposes a KPI clustering
algorithm on the shape-based distance of KPIs to reduce the
model numbers for anomaly detection of many machines. ADS[5]
combines clustering and semi-supervised learning to introduce a
framework for automatically emerging new KPI streams. These
approaches work with univariate TSAD methods. However, cur-
rently, there is no systematic KPI selection research to improve
Multivariate TSAD for many KPIs.

VIII. CONCLUSION

To solve the problem that existing studies have overlooked
the significance of selecting KPIs before applying anomaly de-
tection models, we proposed a fault-injection-based automated
KPI selection mechanism (fKPISelect), which leverages fault
injection for knowledge of the relationship between KPIs and
errors, and anomaly detection models for sensitivity calculation
of KPIs. Through our extensive experimentation and analysis, we
demonstrated the effectiveness and practicality of fKPISelect in
addressing the challenges associated with applying TSAD models
in cloud systems.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Jackson. (2018) Lloyd’s estimates the impact of a u.s.
cloud outage at $19 billion. [Online]. Available: http://www.
eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.
-cloud-outage-at-19-billion

[2] L. Wang, R. A. Hosn, and C. Tang, “Remediating Over-
load in Over-Subscribed Computing Environments,” in 2012
IEEE Fifth International Conference on Cloud Computing,
pp. 860-867.

[3] Z. Shang, Y. Zhang, X. Zhang, Y. Zhao, Z. Cao, and
X. Wang, “Time series anomaly detection for kpis based on
correlation analysis and hmm,” Applied Sciences, vol. 11,
no. 23, p. 11353, 2021.

[4] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig,
P. Agarwal, and G. Shroff, “LSTM-based encoder-decoder
for multi-sensor anomaly detection.” [Online]. Available:
http://arxiv.org/abs/1607.00148

[5]1 Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Ro-
bust anomaly detection for multivariate time series through
stochastic recurrent neural network,” in Proceedings of the
25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2828-2837.

[6] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A.
Zuluaga, “USAD: UnSupervised Anomaly Detection on
Multivariate Time Series,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, ser. KDD *20. New York, NY, USA: As-
sociation for Computing Machinery, Aug. 2020, pp. 3395—
3404.

[7] L. Dai, T. Lin, C. Liu, B. Jiang, Y. Liu, Z. Xu, and Z.-
L. Zhang, “Sdfvae: Static and dynamic factorized vae for
anomaly detection of multivariate cdn kpis,” in Proceedings
of the Web Conference 2021, 2021, pp. 3076-3086.

[8] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and
D. Pei, “Multivariate time series anomaly detection and
interpretation using hierarchical inter-metric and temporal
embedding,” in Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, 2021,
pp. 3220-3230.

[9] J. Xu, H. Wu, J. Wang, and M. Long, ‘“Anomaly
transformer: Time series anomaly detection with
association discrepancy,” in International Conference
on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=LzQQ89U 1qm_

[10] N. Authors, “Netmanaiops/ctf_data: Data of paper “ctf:
Anomaly detection in high-dimensional time series with
coarse-to-fine model transfer”,” 2021, accessed: 2021-12-
14. [Online]. Available: https://github.com/NetManAIOps/
CTF_data

[11] Z. He, P. Chen, and T. Huang, “Share or not share? towards
the practicability of deep models for unsupervised anomaly
detection in modern online systems,” in 2022 IEEE 33rd In-
ternational Symposium on Software Reliability Engineering
(ISSRE). 1IEEE, 2022, pp. 25-35.

[12] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong,
B. Xu, J. Bai, J. Tong, and Q. Zhang, “Multivariate
time-series anomaly detection via graph attention network.”

193

[Online]. Available: http://arxiv.org/abs/2009.02040

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu,
W. Cheng, J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A
deep neural network for unsupervised anomaly detection
and diagnosis in multivariate time series data.” [Online].
Available: http://arxiv.org/abs/1811.08055

P. Authors, “Overview — prometheus,” 2021, accessed:
2021-12-14. [Online]. Available: https://prometheus.io/docs/
introduction/overview/

[15] G. Labs, “Grafana — query, visualize, alerting observability
platform,” 2021, accessed: 2021-12-14. [Online]. Available:
https://gratana.com/grafana/

L. Li, J. Yan, H. Wang, and Y. Jin, “Anomaly detection of
time series with smoothness-inducing sequential variational
auto-encoder,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 3, pp. 1177-1191, 2020.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec-
tion: A survey,” ACM computing surveys (CSUR), vol. 41,
no. 3, pp. 1-58, 2009.

A. Garg, W. Zhang, J. Samaran, R. Savitha, and C.-S.
Foo, “An evaluation of anomaly detection and diagnosis
in multivariate time series,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 6, pp. 2508—
2517, 2021.

R. Sommer and V. Paxson, “Outside the Closed World: On
Using Machine Learning for Network Intrusion Detection,”
in 2010 IEEE Symposium on Security and Privacy, pp. 305—
316.

P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang,
and D. Pei, “FluxRank: A Widely-Deployable Framework
to Automatically Localizing Root Cause Machines for Soft-
ware Service Failure Mitigation,” in 2019 IEEE 30th In-
ternational Symposium on Software Reliability Engineering
(ISSRE), pp. 35-46.

P. Authors, “prometheus/node_exporter: Exporter for
machine metrics,” 2021, accessed: 2021-12-14. [Online].
Available: https://github.com/prometheus/node_exporter

G. Labs, “Node exporter full — grafana labs,” 2021,
accessed: 2021-12-14. [Online]. Available: https://grafana.
com/grafana/dashboards/1860-node-exporter-full/

Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid
clustering of kpis for large-scale anomaly detection,” in
2018 IEEE/ACM 26th International Symposium on Quality
of Service (IWQoS). 1EEE, 2018, pp. 1-10.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing
Dependability with Software Fault Injection: A Survey,”
vol. 48, no. 3, pp. 44:1-44:55. [Online]. Available:
https://dl.acm.org/doi/10.1145/2841425

N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich.
Precision and Recall for Time Series. [Online]. Available:
http://arxiv.org/abs/1803.03639

R. Hat, “Chapter 27. linux traffic control red hat enterprise
linux 9,7 2021. [Online]. Available: https://access.
redhat.com/documentation/zh-tw/red_hat_enterprise_
linux/9/html/configuring_and_managing_networking/
linux-traffic-control_configuring-and-managing-networking
Ubuntu, “Kernel/reference/stress-ng - ubuntu wiki,”
2021. [Online]. Available: https://wiki.ubuntu.com/Kernel/

[13]

[14]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

Reference/stress-ng

[28] “Chaos-mesh/chaos-mesh,” Chaos Mesh. [Online]. Avail-
able: https://github.com/chaos-mesh/chaos-mesh

[29] L. Feinbube, L. Pirl, P. Troger, and A. Polze, “Software Fault
Injection Campaign Generation for Cloud Infrastructures,”
in 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp. 622—623.

[30] O. Sagi and L. Rokach, “Ensemble learning: A survey,’
vol. 8, no. 4, p. el249. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249

[31] A. Hat, Red. Ansible is Simple IT Automation. [Online].
Available: https://www.ansible.com

[32] PyTorch, “Pytorch,” 2021. [Online]. Available: https:
/Ipytorch.org/

[33] NumPy, “Numpy,” 2021. [Online]. Available: https:/numpy.
org/

[34] Production-Grade Container Orchestration. Kubernetes.
[Online]. Available: https://kubernetes.io/

[35] “Sock Shop : A Microservice Demo Application,”
Microservices Demo. [Online]. Available: https://github.
com/microservices-demo/microservices-demo

[36] Locust.io. [Online]. Available: https://locust.io/

[37] C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun,
“Anomaly Detection and Root Cause Localization in Vir-
tual Network Functions,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE),
pp. 196-206.

[38] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu,
Y. Zhao, D. Pei, Y. Feng, J. Chen, Z. Wang, and
H. Qiao, “Unsupervised Anomaly Detection via Variational
Auto-Encoder for Seasonal KPIs in Web Applications,” in
Proceedings of the 2018 World Wide Web Conference, ser.
WWW ’18. International World Wide Web Conferences
Steering Committee, pp. 187-196. [Online]. Available:
https://dl.acm.org/doi/10.1145/3178876.3185996

[39] K.-H. Lai, D. Zha, Y. Zhao, G. Wang, J. Xu, and X. Hu,
“Revisiting Time Series Outlier Detection: Definitions and
Benchmarks.”

[40] R. Wu and E. Keogh, “Current Time Series Anomaly
Detection Benchmarks are Flawed and are Creating
the Illusion of Progress,” pp. 1-1. [Online]. Available:
https://ieeexplore.ieee.org/document/9537291/

[41] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and
D. Pei, “Rapid deployment of anomaly detection models for
large number of emerging kpi streams,” in 2018 IEEE 37th
International Performance Computing and Communications
Conference (IPCCC). 1EEE, 2018, pp. 1-8.

194

Authorized licensed use limited to: Tsinghua University. Downloaded on February 14,2024 at 16:13:43 UTC from IEEE Xplore. Restrictions apply.

