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Abstract—IT services are now popularly hosted in cloud systems.
In order to enhance the availability of cloud services, an emerging
approach for detecting failures of cloud components is to monitor
Key Performance Indicators (KPIs) of the components and apply
Neural Network based AI technologies to detect KPI anomalies.
Multivariate Time Series Anomaly Detection (TSAD) models have
been designed for this purpose. However, when applying such
models directly to real-world cloud systems the anomaly detection
performance is not as good. This is because the number of KPIs in
real cloud systems is typically much more than the number of KPIs
in the datasets used for model evaluation, and the larger number
of KPIs bring about a performance loss of the models’ anomaly
detection. Therefore, selecting KPIs properly is essential for applying
multivariant KPI data for any practical anomaly detection. This
paper studies this performance loss issue when TSAD models are
applied onto real-world cloud systems, and proposes fKPISelect, a
mechanism of automated KPI selection based on fault injection.
We implemented fKPISelect, deployed it to a real cloud system,
and created a real-world KPI dataset. We conducted extensive
experiments, and the experimental results show the effectiveness
and practicality of fKPISelect: it improves the F1 score of anomaly
detection from 0.68 to 0.91 for real-world KPI data.

Index Terms—anomaly detection, cloud reliability, unsupervised
learning, KPI, multivariant analysis

I. INTRODUCTION

Nowadays many IT services are hosted in cloud platforms.

Cloud services must be highly available as accidental failures of

cloud services may cause revenue losses up to millions of dollars

or higher to the service providers, cloud providers and/or service

users [1].

There are a large number of various kinds of components

involved in cloud services, including software programs, virtual

machines (VMs), physical servers, network devices, etc. A com-

mon approach for detecting failures of the components is to

monitor Key Performance Indicators (KPIs) of the components,

such as CPU utilization, memory utilization, disk usage of the

VMs or physical servers, network latency, response time and

service throughput, etc.

Traditionally simple threshold-based approaches are applied to

detect component failures, i.e. pre-defined threshold-based rules

are created to monitor these KPI values and when certain KPI

values exceed the threshold values a failure is detected[2, 3].

The approaches require users to have sophisticated expertise on

This work has been supported by the NSFC Project of China under Grant
62132009. Long Wang is the corresponding author.

the KPI values and carefully select the large number of different

threshold values for so many components’ various KPIs.

Recent years see the rapid adoption of Neural Network based

artificial intelligence (AI), and employing deep learning models,

such as multivariate Time Series Anomaly Detection (TSAD)

models, for KPI-based anomaly detection is extensively studied

[4–13]. Each vector of the time series data at a time point consists

of multiple items with each item being the value of a KPI at that

time. The number of KPIs is just the number of the vector’s

items or the vector dimension. Softwares like Prometheus[14]

and Grafana[15] are now popularly deployed in cloud systems

for collecting, monitoring and visualizing a huge amount of

time series KPI data, and neural network AI models such as

Variational AutoEncoder (VAE)[16], AutoEncoder (AE)[6] are

trained to detect KPI anomalies. Specifically, the AI models

process multivariant time series data [17, 18] and perform the

tasks of reconstructing the data after the models are trained

with the data collected during normal behavior; when the actual

values largely deviate from reconstructed values (in terms of

reconstruction loss values) an anomaly is detected.

However, although these models are demonstrated to be ef-

fective in experimental results reported in papers, applying them

directly to real-world cloud services/systems does not result in as

good anomaly detection performance as reported. Our experience

of practically applying such models to our cloud system shows

that, though their anomaly detection performances, in terms of F1

score (a metric combining both precision and recall of a detection

capability), are reported to be around 0.80 or higher (0.92∼0.98 in

the AnomalyTransformer model [9] and 0.79 in the USAD model

[6]), the F1 score of applying them in our real cloud system is

much smaller (0.68 and 0.28 for the AnomalyTransformer and

USAD models, respectively, as shown in the “Node data Full”

row of Table III in Section VI).

We looked into the performance loss of anomaly detection. The

number of KPIs in real cloud systems is typically much more than

the number of KPIs in the datasets used for model evaluation.

Popular datasets that most existing work is evaluated against are

well-preprocessed, and the preprocessing includes KPI selection;

as a result, the number of KPIs of the datasets is largely reduced.

For example, the Server Machine Dataset (SMD) [5] has 38 KPIs,

and the Course-To-Fine dataset (CTF) [10] has 49 KPIs. But real

cloud systems may have far more KPIs. For example, Prometheus,

a popularly deployed monitoring tool in cloud systems, provides
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various KPIs in the categories of CPU, Memory, disk, network,

etc., and the number of KPIs Prometheus provides in our cloud

system reaches 493. The large number of KPIs bring about much

noise which undermines the models’ performance (see in-depth

discussion in Section III).

As a result, the practical experience of applying multivariate

time series anomaly detection models onto real-world systems,

e.g. [10, 11], employs a manual selection of KPIs as part of

data preprocessing. However, the manual KPI selection demands

operators to have rich experience and expertise in service/system

behavior. Open datasets of multivariant KPI time series data

do not help operators much in the manual KPI selection task.

It is because currently such open datasets do not provide KPI

name or detail information, i.e. what system property (like CPU

utilization, memory utilization, or something else) each item of

a vector in the dataset specifies. Moreover, a KPI item in an

open dataset may not be exactly the same as one collected from

the practical cloud system. So the operators are unable to know

which ones of the large number of KPIs in the practical system

correspond to the small set of KPIs in the datasets.

Therefore, KPI selection is an essential task in applying multi-

variant KPI time series data for any practical anomaly detection.

This paper studies the problem of KPI selection for practical
KPI-based multivariate anomaly detection in cloud systems. As

far as we know, there are few, if not none, prior work that

investigated this essential problem in Multivariate Time Series

Anomaly Detection (TSAD). This paper focuses on studying the

limitations of current KPI-based anomaly detection approaches.

Now almost all KPI-based anomaly detection uses unsupervised

models. So supervised models for KPI-based anomaly detection

is not discussed here.

In this paper, we propose fKPISelect, a fault-injection-based

automated KPI selection mechanism, after studying how the noise

brought by a large number of KPIs worsens the anomaly detection

performance of TSAD models. We inject errors such as network

packet loss and high CPU consumption, but we use the fault
injection terminology in this paper as it has been widely adopted

for traditional reasons. Specifically, the fKPISelect methodology

performs the following steps:

i) The KPI data of the cloud system are collected.

ii) A set of predefined types of errors are injected into a small

set of components in a test environment of the cloud system,

and the KPI data associated with the set of components are

collected. Note that these data include those collected when an

injected error is present and others collected when no error is

present, i.e., before the fault injection or after the injected error

is corrected. These KPI data are labeled as error-present or normal

correspondingly.

iii) For each KPI item we use the time series data of only

this KPI item collected in step i (i.e. the KPI vector dimension

is 1) to train TSAD models and use the data of only this KPI

item collected in step ii as the testing dataset to evaluate how

much this KPI item is sensitive to the predefined error types.

Though the TSAD models are typically unsupervised models, we

exploit the labels in the testing dataset to evaluate the models’

anomaly detection performance (precision, recall, or F1 score),

and compute the KPI item’s sensitivity value according to this

performance. Details of the sensitivity computation are available

in Section IV-A.

iv) After all KPI items’ sensitivity values are computed those

KPI items with values higher than a threshold are selected.

Then the production time series data of only the selected KPI

items (production data are not involved in steps i or ii) are fed

to the TSAD models for online anomaly detection.

A straightforward idea of reducing the number of KPIs is

to leverage common dimensionality reduction technologies such

as clustering algorithms. But our experience shows that the

clustering of KPI data collected during normal behavior does not

help much: the F1 score is 0.71 as shown in the “cluster” row of

Table V in Section VI (when AnomalyTransformer is used). Note

that the F1 score is 0.68 when all KPI data are used. When fault

injection is conducted and error-present KPI data are employed

for KPI selection, the anomaly detection’s F1 score increases to

0.91 in the “fKPISelect” row of Table V.

This clearly demonstrates that error-present KPI data obtained

via fault injection are critical for the KPI selection. It is because

similarities of two KPIs during normal behavior do not mean

the two KPIs still behave similarly when there is an error. We

believe general knowledge of abnormal behavior of the system

(like the error-present KPI data) largely boosts the performance

of anomaly detection, as pointed out by [19]. So for practical

anomaly detection in real-world cloud systems, we leverage fault

injection to gain the knowledge, which is implied by the sensitiv-

ities of the selected KPIs. In summary, this paper’s contributions

are listed as follows:

• To the best of our knowledge, we are the first to investigate

the issue of KPI selection in multivariate TSAD and point out

the necessity of it for practical multivariate TSAD. We propose

fKPISelect, a mechanism of automated KPI selection based on

knowledge learned by means of fault injection.

• We investigated the performance loss issue of multivariate

TSAD models when they are applied to real-world cloud systems,

in particular when there are a large number of KPIs. Besides

the experimental results that demonstrate the effectiveness of our

fKPISelect (Table III), we conducted a theoretical analysis of the

performance loss issue in Section III.

• We implemented fKPISelect, deployed it to a real

cloud system, and created a real-world KPI dataset. The

dataset containing the metadata of the KPIs for future KPI-

engineering research and the fault injection tool are available at

https://github.com/THUzxj/fKPISelect.

• We conducted a series of experiments on both open datasets

and the real-world dataset. The experimental results show the

F1 score of the anomaly detection with full KPI data is 0.68,

the score with manual KPI selection is 0.75, and the score

with fKPISelect is 0.91 (Table III) for the real-world KPI data

(Node data). The results clearly demonstrate the fKPISelect’s

effectiveness in improving the anomaly detection performance

and making TSAD models practical for real systems.

II. GAP BETWEEN EXISTING DATASETS AND DATA IN

PRACTICE

We find a gap between existing open datasets and the KPI data

in practical systems, which makes it difficult to select the most

valuable KPIs for anomaly detection based on existing practice.
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The gap includes three aspects: the number of KPIs, the type of

KPIs, and the relationships between KPIs and errors.

The datasets that most existing works are evaluated on are

well-preprocessed, including the KPI selection, standardization,

etc.. SMD (Server Machine Dataset) is a dataset of 28 servers,

and each server has 38 KPIs[5]. CTF published a dataset of 533

servers, and each server has 49 KPIs, including CPU (15 KPIs),

Memory (10 KPIs), Sockets (6 KPIs), UDP (7 KPIs), TCP (11

KPIs)[10]. Some private datasets are also described in previous

works. TC data is a dataset of over 500 entities, and each entity

has 11 KPIs such as CPU usage, memory usage, and network

speed[11]. FluxRank uses 47 types of KPIs, including CPU (8

KPIs), Disk (15 KPIs), Memory (6 KPIs), Network (13 KPIs),

and OS kernel (5 KPIs)[20].

However, current monitoring tools provide a huge number

of KPIs, considering the complexity and diversity of hosts and

services in systems. One entity may contain multiple components

and each component may have multiple KPI groups providing

different metrics. Each KPI group may have multiple parameters,

such as network interfaces for network KPIs and CPU cores for

CPU KPIs. Taking host monitoring as an example, the agent

node exporter[21] of Prometheus[14] exports a series of OS and

hardware metrics exposed by OS kernels, and the dashboard node
exporter full[22] of Grafana[15] performs queries to Prometheus

and visualize the time series for operation engineers. By default,

node exporter provides various KPIs of Network, CPU, Memory,

and etc., as shown in Table I. In our scenario of monitoring

servers in a cloud system, the number of KPIs reaches 493. The

comparison between existing datasets and the data in our practice

is shown in Table II.

TABLE I: The categories of KPIs and the numbers of KPIs in

the categories provided by node exporter for virtual machines in

our practice

Component Examples of KPI groups Number of KPIs
basic CPU / Memory / Net / Disk 37

Network
Traffic (Packets, Errors, Drops, etc.) 145

Sockstat (TCP, UDP, FRAG/RAW, etc.) 14
Netstat (IN/OUT, Forwarding,

ICMP, TCP, UDP, etc.) 27

CPU Usage, Softnet 9

Memory
Basic, RAM Total 8

Physical (Active/Inactive, Writeback,
Committed, Dirty, etc.) 35

Virtual (Pages In/Out, Page faults, etc.) 8

Storage
Basic, RootFS, SWAP Total 8
Disk (IOps, R/W Data, etc.) 15

Filesystem (Space, Error, Node size, etc.) 35

System

Processes (Status, Schedule, etc.) 10
Misc (Context Switch/Interrupts,
Load, Schedule Timeslices, etc. )

11

Systemd 26
Time Sync 8

Hardware Temperature, Cooling, Power 4
Node Exporter Scrape Time 93

Others Uptime 1

TABLE II: Comparison of KPIs’ number and descriptions in open

datasets and research works with the data in practice

Dataset KPI Num KPI Description in Dataset
SMD[5] 38 CPU, network and memory usage, etc.
CTF[10] 49 CPU, memory, sockets, UDP, TCP

TC data[11] 11 CPU usage, memory usage, and network speed, etc.
FluxRank[20] 47 CPU, Disk, Memory, Network, and OS kernel
Node Exporter 493 All KPIs provided by node exporter

Thus, the first aspect of the gap is that the whole number of

KPIs is far more than the number in existing datasets. If the

entire data are applied to the existing multivariate TSAD models,

the scalability of the models on the KPI dimension will be a

challenge, which will be discussed in Section III.

The second aspect of the gap is that the necessary metadata

of KPIs, such as name, parameter, and unit, are usually missing

in existing open datasets. Most previous work only focuses on

refining models for mining information from given time series

datasets. The KPI selection for creating the existing datasets

was made by researchers or engineers manually based on their

experience, with the selection procedure or standard not clearly

explained. Furthermore, considering the variety of workloads and

components/devices in different systems, there is a high chance

that there are not exactly the same KPIs across different systems.

So existing open datasets do not help much for the KPI selection

task in applying TSAD models to a real system.

The third aspect of the gap is that most existing open datasets

do not provide information on relationships between errors and

KPIs. So it is not clear which KPIs are sensitive to what types of

errors. Then, given a list of specified types of errors, these existing

datasets do not provide guidance on which KPIs are more useful

for the detection.

III. PERFORMANCE LOSS OF MULTIVARIATE TSAD WITH

MANY KPIS

We encountered a phenomenon in our practical experience:

current multivariate TSAD models have a performance loss when

there are a huge number of KPIs. Current multivariate TSAD

models were reported to work well on open datasets [6, 9].

However, in our practice, the models’ accuracy decreases when

the number of KPIs increases.

A. Multivariate TSAD

The multivariate Time Series Anomaly Detection problem is

that, given the multivariate time series in the normal state as

the training input, and the multivariate time series in uncertain

(normal or anomalous) status as the testing input, the model

should judge whether the time series is anomalous at each

time point in the testing input. Rather than using univariate

methods and training and maintaining a model for each KPI,

we use multivariate methods for the following reasons. First,

the multivariate TSAD methods can reconstruct the time series

with more information of the KPIs of the entities and model the

overall status of entities. Second, considering the large number

of KPIs, training and maintaining a model for each KPI has a

much higher overhead. Third, the relation between KPIs and the

relation between KPIs and anomalies are complex and then we

should define rules to determine the anomalies in the entity level

from the anomalies from the KPI level[5].

Current multivariate and unsupervised TSAD models learn

the features of time series from the normal time series, then

distinguish anomalous time series that are different from the

normal ones. As shown in Figure 1, these models employ

reconstruction-based unsupervised methods. These methods are

based on autoencoders (AE) or variational autoencoders (VAE)

which consist of an encoder and a decoder. The specific neural

network models of the autoencoders can be MLP, LSTM, or

Transformer. All KPIs are normalized into the same scale by
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means of methods like min-max scale or standard scale before

the KPIs are fed to the autoencoder models (see Figure 1). The

encoder maps the input into a latent vector Z, and the decoder

decodes Z back to a reconstruction Ŵt.

Fig. 1: The structure of a Multivariate TSAD model

The main training objective of these models is to let the

reconstructed data be as close as possible to the original data

by minimizing the reconstruction loss[6, 8, 9, 11–13]. The

reconstruction loss of multivariate time series Lt at time t is the

average of the reconstruction loss of each KPI:

Lt =
1

m

m∑

i=1

Li,t (1)

where the number of KPIs is m, the reconstruction loss of each

KPI Li,t is:

Li,t = ‖ki,t − k̂i,t‖22 (2)

where ‖ · ‖2 denotes the L2-norm, the origin data ki,t is the

origin data of the i-th KPI’s input window at time t and k̂i,t is

the corresponding reconstructed data.

In the predicting phase, the reconstruction loss is used as

the anomaly score. The time points with higher scores than the

threshold are considered anomalies. It is based on the assumption

that the autoencoder can only reconstruct the encountered data

patterns and will reconstruct worse results when encountering

abnormal data patterns.

B. Performance Loss of Anomaly Detection with Many KPIs

We conducted experiments to study the performance loss

phenomenon as the number of KPIs increases. We created a

synthetic dataset that mimics the situation in which one KPI

responds to an error, and other KPIs remain normal when the

error is present, and let the AnomalyTransformer model processes

the dataset (i.e. part of the dataset for training and the rest for

testing) for detecting the anomaly.

As shown in Figure 2 (the horizontal axis is time), this dataset

contains m time series, and each time series are samples of

Fig. 2: Schematic diagram of the synthesized time series dataset

Fig. 3: How the multiple KPIs are fed into the

AnomalyTransformer model as input in our experiments

a sine wave (sin(t), t is the time), with noises in the normal

distribution added to the samples. Noises in KPI time series data

are inevitable in real systems. Then one of the m time series is

injected with data to mimic a period of anomaly (yellow period

in the figure), as indicated by the Time Series 0 in the figure. All

the other time series (from 1 to m − 1, called redundant time

series) remain normal all the time, i.e. they all show a sine wave

with different noise values added. Note that Time Series 0 here

is a simplified example to show an evident error for the purpose

of clearly explaining the performance loss issue.

Our experiments employ the Multivariate TSAD setup shown

in Figure 1. How the KPIs are fed into the model is illustrated in

Figure 3. ki,t, ki,t+1, ... is the stream of the normalized KPI ki
(1 ≤ i ≤ m). The streams of all m KPIs within a time window

are combined as a matrix X and fed to the AnomalyTransformer

model as the input. Figure 3 also shows AnomalyTransformer’s

structure (the encoder-decoder in Figure 1). More details on the

model’s handling of the input X can be found in [9].

We ran multiple experiments with m varying from 2 to 64.

The AnomalyTransformer model sizes in the experiments, in

terms of the number of parameters (weights), are different as the

encoder’s input layer and the decoder’s output layer have the sizes

associated with the KPI number (other layers have same sizes for

all m): the encoder and decoder’s sizes are 4753432 and 1026

for m=2, and 4848664 and 32832 for m=64, respectively. The

training set has 9901 samples for all experiments.

Figure 4 presents the anomaly scores obtained in our experi-

ments. We can see that when the number of KPIs of the dataset,

m, is 2, the anomalies can be easily detected from the anomaly

scores (the top picture of Figure 4). However, when the number

of KPIs increases to 16 and 64, the anomaly scores during the

error-present period become not so outstanding both in terms

of absolute values and comparisons with other values, and there

are much larger fluctuations of the anomaly scores caused by the

accumulation of so many KPIs’ noises. As a result, the number of

false positives (red lines in the figure) increases when the number

of redundant KPIs increases. Similar experimental results are also

observed for the USAD model. We also tried experiments with

larger models and larger training sets, which demonstrated the

similar performance loss.

C. Explanation

The anomaly detection task is different from traditional deep

learning tasks like regression and classification, whose prediction

is consistent with their training objective. In the anomaly detec-

tion task, the anomaly scores are calculated as the reconstruction

loss of the model output indirectly, instead of the direct output

of the deep learning model.

On one hand, the anomaly scores can only be calculated as the

averages of the reconstruction loss values of all KPIs (equation
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Fig. 4: Anomaly Detection results of AnomalyTransformer with

different redundant KPI numbers m. The dash lines indicate the

thresholds of the reconstruction loss for anomaly detection. The

scale of the score (the vertical axis) decreases as m increases

because of the definition of the reconstruction loss in formula

(1). With more KPIs the denominator increases while the nu-

merator does not increase proportionally (most KPIs have low

reconstruction loss).

Fig. 5: Reconstruction and reconstruction loss of one sine time

series with noises by AnomalyTransformer

1). Existing unsupervised learning-based models assume that the

user does not have anomaly data in the training phase because

of the scarcity of anomaly data and the difficulty of labeling

anomalies[6, 9]. Thus the models are only trained with the

data with normal data and not instructed to place attention onto

specific KPIs. As a result, the models do not know the importance

of individual KPIs for anomaly detection.

On the other hand, deviations exist in the reconstruction loss of

each KPI due to the existence of noises. Ideally, the reconstruction

loss should be very low, near zero, when reconstructing normal

data whose patterns have been seen by the autoencoder. However,

many KPIs have high-frequency noises in random distributions.

We let the AnomalyTransformer model process time series data

with a single KPI, the sine curve, and added noises, and obtained

the model’s reconstruction of the data as well as the reconstruc-

tion loss at every time point. No error is injected in this process.

Figure 5 charts the input time series data, the reconstruction of

the data, and the reconstruction losses along the time. The figure

shows the reconstruction loss fluctuates a lot and sometimes has

quite high values, and note that there is only a single KPI in this

figure. The result shows the noises are hard for the autoencoder-

based multivariate TSAD models to reconstruct precisely, even

when reconstructing the time series in the normal state. As noises

are inevitable in KPIs of practical systems, the deviations of the

reconstruction loss of KPIs are also inevitable.

When the number of KPIs is not so large, certain existing

models are still reported to work well[6, 9] with deviations in re-

construction losses. This is because the change of reconstruction

loss in an anomaly state is significantly greater than the fluctua-

tion range of the deviations when the number of KPIs is small.

As the number of KPIs increases, the deviations are accumulated

by adding up all KPI’s reconstruction loss values and finally go

beyond the anomaly-caused reconstruction changes. Assuming

the deviations ni are in the normal distribution, ni ∼ N(μi, σ
2
i ),

the sum of the deviations n =
∑m

i=0 ni is also in the normal

distribution,

n =

m∑

i=0

ni ∼ N(
m∑

i=0

μi,
m∑

i=0

σ2i ) (3)

which has an accumulated variance. With the accumulated

deviation comparable with or larger than the anomaly score

caused by errors, the models fail to detect the anomalies as

accurately as in the cases with a limited number of KPIs.

A straightforward way to deal with this performance loss is to

design an anomaly detection model for each KPI and vote among

them. However, this design may result in hundreds of neural

models and is not practical at all. Moreover, KPI correlations

may be more complicated than a simple voting of multiple

KPIs’ anomaly detection results. A single neural model may

better exploit such correlations. Therefore, properly selecting

KPIs for anomaly detection is necessary to ensure TSAD models’

performance.

This paper focuses on one particular issue of current KPI-based

anomaly detection approaches, KPI selection, and we studied it in

normal-load behavior. Intermittent heavy loads may result in KPI

values drastically different from their normal values, and such

situations may be flagged as anomalies incorrectly. Continuous

machine learning may help deal with such heavy-load caused

false positives, but it is not in this paper’s scope.

IV. PROPOSED METHOD

This section introduces the proposed Fault-Injection-Based

Automatic Selection of KPIs (fKPISelect), shown in Figure 6.

fKPISelect proposes a flow path of KPI selection from predefined

error types to the error-sensitive KPI (the KPIs that respond to

the errors) list for anomaly detection, solving the gap between

existing datasets (Section II) and letting the multivariate TSAD

models avoid the performance loss when dealing with many

KPIs (Section III). fKPISelect leverages fault injection to gain

knowledge of sensitive KPIs to specified errors and anomaly

detection models to measure the sensitivity of KPIs. fKPISelect is

compatible with existing multivariate TSAD methods, replacing

human work with automated work in the data processing of

anomaly detection models.

A. Criterion Measuring Sensitivity of KPIs

The sensitivity of KPI is defined as whether the KPIs respond

to the errors. Different from examining the huge amount of

KPIs by humans through visualization, a quantitative criterion

measuring the sensitivity of KPIs is required for automatic

selection. However, directly accessing KPIs’ sensitivity to the

errors is a complex problem. Thus we use fault injection and

convert the criterion Is the KPI sensitive to the errors? to the

question Does the KPI behave anomalously when the errors
occur?. Then as anomaly detection models are a ready tool to

judge whether there are anomalies, the question is converted to
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Fig. 6: The overview of fKPISelect and its interaction with anomaly detection system

Do the anomaly detection models recognize the anomalies in the
KPI when the errors occur?.

Unlike existing methods like clustering[23] that purely reduce

KPI numbers, fKPISelect focuses on reducing KPI types. Fault

injection is used for inspecting the relationship between errors

and KPIs [24]. Univariate anomaly detection models are used to

judge whether there are anomalies in each KPI when the errors

occur. Because the univariate anomaly detection models can not

accurately recognize the anomaly every time for the randomness

of the model and the KPI data, to achieve more accurate sen-

sitivity calculation, fault injection should be performed several

times with the same or different configurations for one error type.

After getting the predicted labels of the models, whether the error

events have been detected by the model is determined by whether

there is at least one positive label during each error event. Thus

the sensitivity of a KPI is defined as the recall value of the error

events,

sensitivityi =
numhit errors,i

numerrors
(4)

where numhit errors,i is the number of errors correctly pre-

dicted by the model for i-th KPI, and numerrors is the total

number of injected errors. Then we can select KPIs with higher

sensitivity values by setting a threshold.

Other potential choices of the sensitivity of KPIs include the

F1 score of the models (a widely used evaluation measure for

classification tasks that is the harmonic mean of precision and

recall) and the output anomaly scores by the models. However,

compared with the F1 score that has various definitions with

adjustment for time series[25], recall of the error events enables

us to further apply the voting mechanism (discussed in Section

IV-B2). And as the number of positive points is equal when we

fix the anomaly ratio, a higher recall roughly leads to a higher

F1 score. Moreover, anomaly scores rely on anomaly detection

models and vary in different KPIs, thus can not be used for

comparison. So, using recall is reasonable and practical.

B. fKPISelect Mechanism

1) Fault Injection: As shown in part A in Figure 6, first,

a set of concerned types of errors should be specified as the

input of fKPISelect. Fault injection tools[26–28] are used to

inject various types of errors into services and servers. Then,

plan several error configurations in detail for each specified error

type. The error configurations include intensity, target, random

changes, etc., varying in different error types. After that, perform

the fault injections in the experimental system that imitates the

target system or is sampled from the target system and has similar

workloads with the target. The fault injections are organized in

fault injection campaigns [29]. Each fault injection lasts for a

period of time to wait for the spread of the errors. The fault

injection logs from tools are recorded to label the anomalies.

Finally, collect the KPI data during the fault injection for the test

set and the error labels within the error logs. An example of how

the fault injections are planned and performed in our practice is

introduced in Section VI-B.

2) KPI Sensitivity Calculation: As shown in part B in Figure

6, we calculate the KPI sensitivity and perform KPI selection

on it. Univariate anomaly detection models are trained with the

normal data in the training set collected in the experimental

system for each KPI. Then the test data are input to perform

the model inference. The output anomaly labels of the models

and the error labels from error logs are used to calculate the

sensitivity introduced in Section IV-A. Instead of finding the best

threshold for each model, we fix the anomaly ratio of anomaly

scores to one global value across different KPIs for comparison

of sensitivity.

As fKPISelect uses the anomaly detection results of the in-

jected errors for KPI selection, the accuracy of KPI sensitivity

depends on the performance of the anomaly detection models,

thus the inaccuracy of the models will lead to the inaccuracy

of sensitivity calculation. One type of the inaccuracy is false

negative: a KPI responds to the error, but the anomaly detection

model fails to flag the anomaly. In this situation the KPI’s

response is not intense enough for this anomaly detection model.

The other type is false positive: during an error, a KPI doesn’t

respond to the error, but the model flags an anomaly falsely. This

leads us to wrongly select an insensitive KPI as a sensitive one.

Note that the false negative and false positive terms used here
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are for the KPI selection, and are not for analyzing final anomaly

detection results.

Inspired by ensemble learning[30], which uses multiple algo-

rithms to reach a better performance than one alone algorithm,

we apply a voting mechanism to identify the detected anomalies

during the error events. We use multiple models to give a result

of the detected anomalies during the error events separately. If

over half the number of the models recognize the anomaly in one

KPI during one error event, we decide that the models recognize

the anomaly in this KPI during the error event, otherwise, the

models don’t recognize the anomaly in this KPI during the error

event. Finally, the voted results lead to better KPI selection.

3) KPI Clustering: One more problem is the false ignorance

of possibly error-sensitive KPIs. Although fault injections can

efficiently reveal the KPIs related to the injected errors, we can

only perform part of the error configurations of one specified error

type. Directly selecting KPIs for the performed fault injection

configurations leads to a risk of ignoring error-sensitive KPIs

that are also relative to the error type but not tested, which may

reduce the generalization performance of the anomaly detection

model.

To address this challenge, when we have selected some KPIs,

KPIs that have similar properties to the selected KPIs are also

should be selected. To find the KPIs with similar properties,

selecting the KPIs which have similar shapes to them should

also be selected. Because some KPIs with similar properties are

similar in shape as the same workload of the entity influences

them. A shape-based clustering[23] method is used to find similar

KPIs, as shown in part C in Figure 6. Then, the cluster results

will be used for an extended selection of KPIs in the next step. If

the data has information on how KPIs are clustered, predefined

clusters can also be input to the cluster method.

The shape-based distance of 2 KPIs is the max normalized

cross-correlation of the selected windows of 2 KPIs. HDBSCAN

is adopted for it only depends on the input distance matrix and

parameter minPts (the minimum number of points within one

cluster).

4) KPI Selection: As shown in part D in Figure 6, the pre-

selection and extended selection are done to generate the final

error-sensitive KPI list. First, a threshold of sensitivities of KPIs

α is defined, and the KPIs with sensitivities higher than the

threshold are selected. Then, a selecting ratio of each cluster

is calculated as the proportion of the selected KPIs to the total

KPIs in the cluster. A threshold of selecting ratio β is set and

the KPIs in clusters that have higher selecting ratios are added

to the extended list of KPIs.

The intuition behind the two thresholds is below. We first

select a set A of KPIs based on fault injection results by using

the threshold α, and then select another set B whose properties

(curve shapes) are sufficiently resembling those in A by using

the threshold β. The final selected KPIs are A+B.

5) Model Training and Online Anomaly Detection: As shown

in Figure 6, with the error-sensitive KPI list applied to the data

processing, users can train the multivariate TSAD model on

the selected KPI data and apply the model to online anomaly

detection. The knowledge of selected KPIs is directly transferred

from the experimental systems to the production systems in our

practice because the running logic and KPI types are consistent

across the experimental system and the target.

V. IMPLEMENTATION

A fault injection tool is implemented with Ansible (An IT

Automation tool)[31] as the controller and tc (traffic control)[26]

and stress-ng[27] as the executors. The controller manages

the fault injection campaign, generates fault injection commands,

and sends them to executors. The executors execute the com-

mands in the target machines.

fKPISelect is implemented based on PyTorch[32] and

Numpy[33]. USAD[6] and AnomalyTransformer[9] were used

in fKPISelect to calculate the sensitivity of KPIs, then the two

models voted for the selected KPIs.

VI. EVALUATION

A. Experimental Setup

Fig. 7: The overview of the Experimental Setup

As shown in Figure 7, first, we build an experimental system

that imitates the target system. Second, we perform fault injection

in the experimental system and collected the data. Then fKPIS-

elect is deployed to select error-sensitive KPIs. Subsequently,

we use the error-sensitive KPI list to preprocess the dataset.

Finally, the data preprocessed is used for anomaly detection and

the anomaly detection results were analyzed. Experiments are

performed on SMD, CTF, and Node data (introduced in Section

VI-B) separately.

In our scenario, the target system is a production cloud

system containing thousands of nodes. However, labeling the

data collected from the target system is painstaking, and at the

same time, there are too few anomaly samples in the target

system’s data. Therefore, we build an experimental system with

real workloads, and we monitor the experimental system using

the same KPIs as in the target system. The experimental system

is a 5-node distributed system with a container cloud platform

Kubernetes[34] cluster deployed on it. Each node has 8 logical

CPU cores and 16GB memory with the Ubuntu 20.04 LTS. We

generate workloads on the experimental system similar to the

target system. Sock-shop microservice [35] is deployed. We use

the load testing tool Locust[36] running out of the experimental

system to manage the users with the number changes among

50-150 periodically and 100 queries per second to send HTTP

requests to Sock-shop. We use Prometheus[14] for service and
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host metric collection. To maintain consistency with the target

system, we employed the node exporter [21] software to collect

data for the same set of KPIs.

The KPI selection and Anomaly detection experiments were

performed on the Separate Server. The server has a GPU of

GeForce RTX 3090, a CPU of Intel Xeon Silver 4214R 2.4G,

which has 48 logical CPU cores, and 188GB memory with the

Ubuntu 22.04 LTS Linux system.

Here we describe the hyperparameters for USAD and Anoma-

lyTransformer training. For both models, the number of training

epochs is 10 and the window size is 5. For the USAD model,

the batch size is 10000. For the AnomalyTransformer model, the

batch size is 256. During training, an early stop strategy is applied

according to the validation loss at the end of each epoch.

B. Datasets

As shown in Figure 7, we used Node data, SMD, and CTF

datasets in the experiments. The existing datasets, SMD and

CTF, are introduced in Section II, while the real-world dataset

Node data is introduced here.

The data collected from the experimental system with fault

injection were called Node data, which is a dataset that has 493

KPIs. The training set and testing set both contain 7 days of

KPI data from 5 machines with an exporting interval of 15s. We

injected four types of anomalies that widely exist in common

computing systems[37], described below:

Network Anomalies. Network anomalies, including network

packet delay, network packet loss, and network packet duplicate,

are injected by tc to emulate the s of network interfaces, the

operating systems, and the interconnection of the network.

High CPU consumption. Anomalous high CPU consump-

tions are injected by stress-ng to emulate the situation

that anomalous programs fell into infinite loops, busy waits, or

deadlocks.

Memory leaks. Anomalous memory leaks are injected by

stress-ng to emulate the situation that allocated chunks of

memory are not freed after use and then the accumulation of

memory leaks causes memory shortage and system failures.

Anomalous number of disk access. Anomalous high number

of disk accesses is injected by stress-ng to emulate the

situation that a high number of disk retries is caused by disk

access failures or a high number of disk accesses from anomalous

programs.

Each fault injection campaign contains one fault injection

experiment. In each fault injection campaign, the workload runs

for 40 minutes. The error is injected in the period between 20

minutes and 23 minutes. As the anomalies are rare in practical

systems, to ensure that the detection of the errors is not influenced

by the near errors, a 37-minute gap between two injections can

successfully prevent models with high window sizes such as 100

(the duration of a window is 100× 15 seconds or 25 minutes).

In our evaluation, both KPI selection and anomaly detection

require datasets. The datasets for KPI selection and for anomaly

detection should not overlap. Therefore, we split a dataset into

two parts, one for KPI selection and the other for anomaly

detection, accounting for 30% and 70% respectively. As shown

in Figure 8, a dataset consists of time series data of n nodes,

we divide the original training set and test set according to the

time, and then recombine the training set and the test set, T0+T2
time period data for KPI selection, and T1 +T3 time period data

anomaly detection.

Fig. 8: Dataset segmentation for KPI selection and performance

evaluation

C. Evaluation Measures

The measure to evaluate the performance of TSAD models

should be defined because of the special properties of time

series. The anomaly detection models give an anomaly label

to each time point. Anomaly detection can be treated as a

classification task and evaluated by precision, recall, and F1 score.

Precision measures the proportion of true positive predictions out

of all positive predictions, recall measures the proportion of true

positive predictions out of all actual positive instances, and F1

score is the harmonic mean of precision and recall. Previous

works widely use the Point Adjustment strategy: if any point

in an anomaly segment in the ground truth can be detected by a

chosen threshold, then say this segment is detected correctly, and

all points in this segment are treated as if they can be detected

by this threshold[5, 6, 9, 38]. For threshold selection, we don’t

check all possible thresholds and search for the best F1 score

because in practice there are no ground truth labels for searching

for the best result. Instead, we select a suitable fixed anomaly

ratio for each model.

D. Comparisons

We conduct a series of experiments on SMD, CTF, and

Node data. We first apply fKPISelect (using both USAD and

AnomalyTransformer for voting) to preprocess each dataset,

and then employ USAD or AnomalyTransformer for anomaly

detection on the preprocessed data. We do not apply other filtering

of KPIs such as pruning of constant-value KPIs. Because certain

constant-value KPIs may indicate errors, e.g. “Network Traffic

Errors, Network Traffic Drop, TCP Errors” in our cloud’s KPIs

remain as 0 for a long time and their value changes indicate

certain errors. So, directly pruning them away automatically may

not be good.

Table III presents the performance of anomaly detection using

USAD and AnomalyTransformer on SMD, CTF, and Node data

datasets after different data preprocessing techniques. The thresh-

old α is 0.08 and the threshold β is 0.80 in the experiments. For

each dataset, we compared the performance of using all KPIs

(Full), manually selected KPIs (Manual), and KPIs automatically

selected through fKPISelect preprocessing. For the Node data

dataset in Table III, the KPIs associated with the Full prepro-

cessing are all of the 493 KPIs directly collected from our cloud

system via Prometheus. fKPISelect selected 49 KPIs from these

493 KPIs. To compare fKPISelect with manual KPI selection,
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TABLE III: Comparison of Anomaly Detection Performance

Dataset Preprocess USAD AnomalyTransformer
Precision Recall F1 score Precision Recall F1 score

Node data
Full 0.3847 0.4088 0.2756 0.5625 0.8571 0.6792

Manual 0.4610 0.7976 0.5843 0.6296 0.9285 0.7504
fKPISelect 0.4702 0.8069 0.5942 0.8461 0.9897 0.9123

SMD
Full 0.6509 0.6533 0.6521 0.9414 0.8901 0.9151

Manual 0.6800 0.7100 0.6946 0.9424 0.8354 0.8856
fKPISelect 0.6082 0.8110 0.6951 0.9421 0.9247 0.9338

CTF
Full 0.2976 0.3439 0.3190 0.9047 1.0000 0.9500

Manual 0.2976 0.3440 0.3191 0.9051 1.0000 0.9502
fKPISelect 0.4534 0.5598 0.5010 0.9070 1.0000 0.9646

TABLE IV: Comparison of the time and space cost

Dataset Preprocess KPI Numbers
USAD AnomalyTransformer

Training
time (sec)

Detection time
per sample (sec)

Model
size (KB)

Training
time (sec)

Detection time
per sample (sec)

Model
size (KB)

Node data
Full 493 292.75 8.54E-3 45250.67 361.34 1.56E-2 32525.59

fKPISelect 49 59.11 5.16E-4 518.92 63.28 1.47E-3 28971.91

experts select KPIs based on the visualization of the KPIs in

the training set and the test set, and the KPI metadata (only

in Node data). We kept the number of manually selected KPIs

consistent with the number of automatically selected KPIs.

Node data, containing a larger number of KPIs than other

datasets, exhibited the most significant performance improvement

after KPI selection. Compared to using all KPIs for anomaly de-

tection, with fKPISelect preprocessing, the F1 score is improved

from 0.28 (0.2756 in Table III) to 0.59 for USAD and from 0.68 to

0.91 for AnomalyTransformer. Although SMD and CTF datasets

were preprocessed before being published, applying fKPISelect

preprocessing still lead to performance improvements.

We also ran experiments of random KPI selection on the SMD

dataset while using the AnomalyTransformer model. The random

selection achieved the 0.82 F1-score, much worse than the three

selections compared in Table III) (all over 0.88).

Table IV presents a notable decrease in the time and space

cost of USAD and AnomalyTransformer after applying fKPIS-

elect. The Node data dataset is used for evaluation, with two

preprocessing approaches: Full, representing the use of all 493

KPIs, and fKPISelect, where 49 selected KPIs are utilized. The

Training Time (sec) refers to the duration required for model

training. The Detection time per sample (sec) represents the time

that the anomaly detection model process each individual data

sample. Model size (KB) denotes the storage occupied by the

models. The reduction of the input number of KPIs leads to a

smaller model size and shorter training and predicting time. The

USAD’s model size is reduced by 98.85% (from 45250.67 to

518.92) because USAD leverages full connect layers with the

input and output shape proportional to the number of KPIs.

E. Ablation Study

To validate the effectiveness of our fKPISelect design, we

conducted a series of experiments on the Node data dataset,

including: (i) cluster: Using the straightforward method of clus-

tering to reduce the number of KPIs, as introduced in Section

I. (ii) -vote: Removing the voting mechanism. (iii) -cluster:

Removing the clustering mechanism. (iv) -vote,F1: Using F1

score as the sensitivity of KPIs, at the same time removing the

voting mechanism because of incompatibility.

The Node data dataset can be clustered into 8 classes by their

shapes, in experiment (i), we randomly select 6 KPIs in each

cluster. In experiments (ii) and (iv), the AnomalyTransformer

model was used to calculate the Sensitivity of KPIs. In experiment

(iii), KPIs were directly selected based on their Sensitivity

rankings without extended selection. The KPI numbers of the

experiments (ii), (iii) and (iv) are all 49.
As shown in Table V, the experiment that uses the straight-

forward method of clustering to reduce the number of KPIs has

the lowest F1 score, since the algorithm only clusters KPIs and

cannot select useful KPIs for anomaly detection. The removal

of the voting mechanism (-vote) has a greater impact than the

clustering mechanism (-cluster), which demonstrates that the

voting mechanism plays a more important role in KPI selection,

and the anomaly detection ability of different models is a more

important factor to consider. The result of -vote, F1 shows

that using F1 score as the sensitivity has a similar effect as

using recall, but using F1 score is incompatible with the voting

mechanism.

TABLE V: Anomaly Detection Performance of different design

of fKPISelect

Preprocess USAD AnomalyTransformer
Precision Recall F1

score
Precision Recall F1

score
cluster 0.4873 0.2765 0.3528 0.6101 0.8571 0.7128
-vote 0.4264 0.4795 0.4514 0.6605 0.8861 0.7569

-cluster 0.4864 0.6222 0.5460 0.7066 0.9518 0.8246
-vote,F1 0.4542 0.5530 0.4988 0.5726 0.8874 0.6961

fKPISelect 0.4702 0.8069 0.5942 0.8461 0.9897 0.9123

F. Sensitivity Study
In Figure 9, we investigate the effect of the number of injected

errors of one error type on the KPI selection result. We take the

KPI list’s overlap ratio with the top-K sensitive KPI list calculated

with an error number of 100 as the criterion. When the number

of error events is 10, the overlap ratio of top-K-sensitive KPIs

(except top-100) is over 0.7. When the number of error events

is 10, the overlap ratio of top-K-sensitive KPIs (except top-100)

is over 0.8. Thus, if time is limited, performing 10 or 20 fault

injections can reach similar results with higher numbers of fault

injections.

G. Study on the Result of fKPISelect
This section introduces a study on the result of fKPISelect,

including the relationships between KPIs and errors, and the

analysis of properties of selected and unselected KPIs.
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Fig. 9: The overlap ratio of top-K KPIs calculated with different

error numbers and those calculated with an error number of 100

TABLE VI: The samples of selected KPIs sensitive to different

types of errors

Error Type Samples of Selected KPIs
Network Network Traffic, CPU Usage, Network Errors, etc.

CPU CPU Usage, Seconds spent by processes waiting
for CPU, Network Traffic, etc.

Memory RAM Usage, Memory used by user-space
applications, Memory Page Faults, etc.

Disk CPU Usage, Disk Queue Size, Disk IOps
Completed, etc.

1) Sensitive KPI to Different Error Types: We used fKPISelect

to select KPIs from Node data. The samples of selected KPIs

sensitive to the four injected types of errors are shown in Table

VI. From the results of the automatic KPI selection, here is some

inspiration we summarize for host monitoring:

• Resource usage is generally sensitive to errors. For

common workloads and error types, KPIs of resource usage (CPU

usage, RAM usage, and Network traffic which can be seen as

bandwidth usage) is important metrics for monitoring the system,

which is consistent with prior experience.

• Monitor multiple components’ KPIs in one entity. For

each error type, the sensitive KPIs are related to various KPIs.

As shown in Table VI, errors in CPUs can lead to anomalies

in Network Traffic and errors in disk and network can lead

to anomalies in CPU usage. The reason is that the workload

is processed with the cooperation of each part. Thus anomaly

detection of multivariate time series of multiple components’

KPIs is worthwhile to monitor the overall status of entities.

• Involve process data in host monitoring. Some errors can

be revealed by KPIs related to processes, such as the time spent by

processes waiting for CPU. Although this type of KPI is ignored

by previous datasets[5, 10], the statistics of processes provided

by systems are also valuable to be monitored for host monitoring.

2) Comparison Between Selected and Unselected KPIs: Fig-

ure 10 shows the selected and unselected KPIs separately, where

the x-axis is the time, the y-axis is the value of the KPI, and the

yellow region indicates that anomalies occurred during the time

period. Two selected error-sensitive KPIs to memory errors are

shown in Figures 10a and 10b, where both KPIs suddenly increase

when the memory error occurs and fall back when the error

recovers. Figures 10c and 10d show the shapes of two clusters

of unselected KPIs, and we select ten KPIs from each cluster to

draw them in different colors. Figure 10c is the cluster of KPIs

that fluctuate very little during both normal and anomaly periods,

and Figure 10d is the cluster of KPIs that fluctuates greatly during

the two periods. In general, fKPISelect tends to select KPIs that

fluctuate obviously during anomaly periods and disregard those

not changing much relative to normal fluctuations.

(a) RAM Usage (b) Memory Page Fault

(c) cluster of unselected KPIs 1 (d) cluster of unselected KPIs 2

Fig. 10: Two examples of selected error-sensitive KPIs to memory

errors, and two example clusters of unselected KPIs

VII. RELATED WORK

In recent years, numerous works have researched Multivariate

Time Series Anomaly Detection (TSAD). The mostly concerned

research points include mining more information in general

TSAD tasks, such as OmniAnomaly[5], USAD[6], SDF-VAE[7],

InterFusion[8], AnomalyTransformer[9]; improving the scalabil-

ity of the entity monitoring, such as CTF[10], UniAD[11]. The

detailed design of these methods is discussed in section III.

However, none of them take how to select suitable time series to

represent a whole entity as a question at the preprocessing stage.

Another problem with these works is that these improvements are

incompatible with others. Currently, some research works focus

on the dataset quality and evaluation methods to make anomaly

detection research more practical to real-world systems[39, 40].

Several works focus on the engineering of KPIs for anomaly

detection. The most popular methods include applying clustering

algorithms to KPIs. ROCKA[41] proposes a KPI clustering

algorithm on the shape-based distance of KPIs to reduce the

model numbers for anomaly detection of many machines. ADS[5]

combines clustering and semi-supervised learning to introduce a

framework for automatically emerging new KPI streams. These

approaches work with univariate TSAD methods. However, cur-

rently, there is no systematic KPI selection research to improve

Multivariate TSAD for many KPIs.

VIII. CONCLUSION

To solve the problem that existing studies have overlooked

the significance of selecting KPIs before applying anomaly de-

tection models, we proposed a fault-injection-based automated

KPI selection mechanism (fKPISelect), which leverages fault

injection for knowledge of the relationship between KPIs and

errors, and anomaly detection models for sensitivity calculation

of KPIs. Through our extensive experimentation and analysis, we

demonstrated the effectiveness and practicality of fKPISelect in

addressing the challenges associated with applying TSAD models

in cloud systems.
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