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Outline

• Studying the problem of KPI selection for practical KPI-based 
multivariate anomaly detection in cloud systems
• KPI-based Multivariate Time Series Anomaly Detection
• There are a larger number of KPIs in practice than those in datasets and 

the SOTA model has a detection accuracy loss when the number of KPIs 
is large

• Proposing fKPISelect, a fault-injection-based automated KPI 
selection mechanism.
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KPI Anomaly Detection

Components on cloud systems
• Software Programs
• Virtual Machines
• Physical Servers
• Network Devices
• … 

Key Performance Indicators 
(KPIs) of components

• CPU Utilization
• Memory Utilization
• Disk usage
• Network latency, bandwidth
• Service response time, 

throughput
• …
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AI-based Anomaly Detection

• Based on Autoencoder (AE)

• Learn representations of normal data patterns

• Encountered data patterns Reconstruct well

• Anomalous data patterns Reconstruct poorly
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Multivariate Time Series Anomaly Detection

• Sliding windows are used to cut 
part of the data

• The multiple time series are treated 
equally with the same weight.

• Anomaly score can be seen as the 
average reconstruction loss of each 
time series: 𝐿𝑡 =

1

𝑚
σ𝑖=1
𝑚 𝑘𝑖,𝑡 − ෢𝑘𝑖,𝑡 2
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• Previous models:
• OmniAnomaly (KDD’19), 

USAD(KDD’20), 
AnomalyTransformer(ICLR’22), Uni-
AD(ISSRE’22)……
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AI-based Multivariate Time Series Anomaly 
Detection
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From experiments to real-world systems

• Models directly applied to real-
world systems does not perform 
as well as reported in 
experimental datasets. 

• There’s a gap between existing 
datasets and data in practice.

• Experimental Datasets
• Well-preprocessed
• Limited KPI numbers
• Lack KPI metadata

Data KPI 
Numb

er

KPI Description in 
Dataset

SMD (KDD’19) 38 CPU, network and 
memory usage, etc. 

CTF_data
(INFOCOM’21)

49 CPU, memory, sockets, 
UDP, TCP 

TC_data
(ISSRE’22)

11 CPU usage, memory 
usage, and network 

speed, etc

FluxRank
(ISSRE’19)

47 CPU, Disk, Memory, 
Network, and OS kernel 
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Gap Between Existing Datasets and Data in 
Practice

• Data in Practice
• Complex & Diverse

• Example: Node Exporter Data 
• Collected by Prometheus
• Visualized by Grafana

Data KPI 
Numb

er

KPI Description in 
Dataset

SMD (KDD’19) 38 CPU, network and 
memory usage, etc. 

CTF_data
(INFOCOM’21)

49 CPU, memory, sockets, 
UDP, TCP 

TC_data
(ISSRE’22)

11 CPU usage, memory 
usage, and network 

speed, etc

FluxRank
(ISSRE’19)

47 CPU, Disk, Memory, 
Network, and OS kernel 

Node Exporter 493 All KPIs provided by 
node exporter
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Gap Between Existing Datasets and Data in 
Practice

Basic KPI, 

37

Network, 

186

CPU, 9Memory, 51

Storage, 58

System, 55

Hardware, 

4

Node 

Exporter, 
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Others, 1

KPI NUMBER OF DIFFERENT 
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Accuracy loss of TSAD:
Experiment

• Synthetic datasets
• With various KPI numbers
• Partial KPIs are affected by errors, 

other KPIs remain normal

• SOTA Model: AnomalyTransformer
(ICLR’22)

10

Phenomenon: Current multivariate 
TSAD models have a detection 
accuracy loss when there are a huge 
number of KPIs.
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Performance loss of TSAD:
Experiment

• Result
• When the number of KPIs increases, 

the anomaly scores during the error-
present period become not so 
outstanding, causing more false 
positives.
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Phenomenon: Current multivariate 
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Performance loss of TSAD: Explanation
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Phenomenon: Current multivariate TSAD models have a detection 
accuracy loss when there are a huge number of KPIs.

Unsupervised learning: Anomaly 
scores can only be calculated as the 
averages of the reconstruction loss 
values of all KPIs.

𝐿𝑡 =
1

𝑚
𝐿𝑖,𝑡

Imprecise Reconstruction: 
Deviation exists in the reconstruction 
loss of each KPI due to noises.

𝑛𝑖~𝑁(𝜇𝑖 , 𝜎𝑖)

Deviation accumulates:
𝑛 =
σ𝑖=0
𝑚 𝑛𝑖 ~𝑁(σ𝑖=0

𝑚 𝜇𝑖 , σ𝑖=0
𝑚 𝜎𝑖

2)
(assume the deviations are in normal distribution)



fKPISelect: Fault Injection-Based KPI Selection

• Problem: KPI selection for practical KPI-based multivariate 
anomaly detection in cloud systems

• Solution:

For each KPI, consider:

Is the KPI sensitive to 
the errors?

Does the KPI behave 
anomalously when the 

errors occur?

Do the anomaly 
detection models 

recognize the 
anomalies in the KPI 

when the errors occur?
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fKPISelect: Fault Injection-Based KPI Selection
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Fault Injection
Anomaly 
Detection 
Models

quantitative criterion of KPI’s Sensitivity to Errors:
sensitivity of KPI i

=
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝐾𝑃𝐼 𝑖

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠
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fKPISelect: (1) Fault Injection
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• Define fault types and plan 
fault injection 
configurations in detail

• Fault injection on 
experimental system

• Get KPI data and fault logs 
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17

• Use the detection results for injected faults to calculate sensitivity

• Voting mechanism by multiple models to improve accuracy



...

B. Sensitivity calculation

Fault Injection

Model 
Training

Voting
Data Pre-
processing

Full KPI 
Data 

Predefined 
Faults

Target 
System

Models
…

Experimental 
System

Model 
Inference

fKPISelectA. Fault injection 

Sensitivity 
of KPIs

Threshold 
α

Threshold 
β

Extended 
Selection

Pre-
selection

Pre-selected 
KPI List

Fault-
sensitive
KPI List

Scores 
of KPIs

C. Clustering

Shape-based 
Clustering

KPI 
clusters

Full KPI 
List

Testing 
Set

Training 
Set

Full KPI 
Data 

Imitate/Sample

Selected 

D. Selection

Fault 
Logs

fKPISelect: (3) KPI Clustering

18

• Solve the problem of the false ignorance of error-sensitive KPIs 
due to the limitation of fault injections

• Cluster the KPIs with similar properties for extended KPI selection
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• Threshold of KPI sensitivity (step 2) 

• Threshold of cluster selecting ratio (step 3)
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• Transfer the selection list to the target system

• Train and use the models on the data of selected 
KPIs
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Evaluation

• Compare performance with
• All KPIs
• Manual Selection

• Dataset replicating practical scenario: Node_data
• Experimental System: 5-node Kubernetes cluster
• Fault Injection on nodes

• Network Anomalies
• High CPU consumption
• Memory Leaks
• Anomalous number of disk access

• Also performed simplified experiments on public datasets
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Evaluation

• The detection performance improved
• F1 score increased from 0.68 to 0.91 (for AnomalyTransformer) in 

Node_data
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Evaluation

• Time & Space cost are reduced
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Evaluation

• Selected KPIs

• Unselected KPIs
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RAM Usage & Memory Page Faults are sensitive to memory errors

2 groups of Unselected KPIs



Summary

• Focus on the issue of KPI selection in multivariate time series 
anomaly detection.

• Investigate the performance loss issue of multivariate TSAD 
models with experiments.

• Propose fKPISelect, a fault-injection-based automated KPI 
selection mechanism.

• Code and dataset are available at https://github.com/THUzxj/fKPISelect
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https://github.com/THUzxj/fKPISelect
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Thank you!
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